A

/

e

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

a
\

a ¥

/,

[\

S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

SOCIETY

OF

OF

Downloaded from rsta.royalsocietypublishing.org

TRANSé(FZTIONS SOCIETY

PHILOSOPHICAL THE ROYAL

The Kinetic Theory of a Gas Constituted of Spherically
Symmetrical Molecules

S. Chapman

Phil. Trans. R. Soc. Lond. A 1912 211, 433-483
doi: 10.1098/rsta.1912.0012

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand
corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1912 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;211/471-483/433&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/211/471-483/433.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

o
A

a
/)

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

[ 433 ]

XII. The Kinetic Theory of a Gas Constituted of Spherically Symmetrical
Molecules.

By S. Caarman, M.Sc., Trinaty College, Cambridge ; Chief Assistant,
Royal Observatory, Greenwach.
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Introduction.

TaE principal kinetic theories of a gas proceed either on the hypothesis that the
molecules are rigid elastic spheres, or that they are point centres of forces which vary
inversely as the fifth power of the distance. MaXWwELL has worked out the
consequences of the latter hypothesis in his well-known theory,* which is unrivalled
in its high degree of accuracy and (after some improvements by Borrzmannt) in its
perfection of mathematical form. All the quantities not taken account of in the
theory (such as the time occupied by molecular encounters, and the effect of collisions
in which more than two molecules take part) are properly negligible under ordinary
conditions. The theory has the disadvantage, however, that the underlying
hypothesis is highly artificial (being chosen chiefly on account of mathematical
simplifications connected with it, rather than from any physical reasons), and does
not represent the real facts at all adequately.

* ¢Phil. Trans.,” 1867 ; ¢Sciensific Papers,” vol. ii.,, p. 23. For convenience we shall refer to a gas of the
type there contemplated as a Maxwellian gas. Of course, its molecules possess no internal energy.
t ¢ Vorlesungen iiber Gastheorie,” vol. i.

VOL. CCXI.—A 482. 3 K 9.3.12
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434 MR. S. CHAPMAN ON THE KINETIC THEORY OF A GAS

The other hypothesis referred to seems to be much more in agreement with fact,
but its consequences have been worked out less accurately. The method which
has almost always been used is the one originally devised by Crausivs and
MaxwELL ; MAXWELL abandoned it later, however, as it had “led him at times into
grave error.” In spite of its apparent simplicity, numerical errors of large amount
may undoubtedly creep in in a very subtle way. Hence the theory of a gas whose
molecules are elastic spheres remains in a rather unsatisfactory state. As a
“descriptive” theory (to use MEYER'S apt term) it has, however, served a useful
purpose ; the general laws of gaseous phenomena have been developed by its aid in
an elementary way, which has conduced to a wider diffusion of knowledge of the
kinetic theory than would have been possible if' the sole line of development had been
by the more mathematical and accurate methods used by MAXWELL and Borrzmanw.

In this paper I have applied the latter methods, with an extension of the analysis,
to the elastic-sphere theory among others. In fact, I have obtained expressions for
the viscosity, diffusivity, and conductivity of a gas without assuming any properties
of the molecules save that they are spherically symmetrical. Many known laws are
thus proved more generally than in any former theories, but the formulee so obtained
cannot in all cases be put into a really useful form without a knowledge of the nature
of the molecules. The supplementary calculations required to complete the general
formulee of Part I. of this paper are carried out in Part IL for three special cases,
viz., rigid elastic spherical molecules, molecules which are centres of repulsive or
attractive force varying inversely as the n'* power of the distance, and rigid elastic
spherical molecules surrounded by fields of attractive force. In Part III. the general
formulee are completed in these cases and discussed in their relations to the results of
former theories and of experiment.

Parr 1.—GeNERAL THEORY.
1. Statement of the Problem.

We shall deal with a gas composed of two kinds of molecules, which are all
supposed to be spherically symmetrical ; m, m/, », v will denote their masses and the
number of each kind per unit volume respectively. Similarly the velocity components
of typical molecules of the two kinds will be denoted by (u, v, w), (v/, v/, w'). Let Q
be any function of the velocity components of a single molecule (e.g., momentum,

energy). At any point (x, y, z) let Q be the mean value of Q, so that

Q= “J Q f (u, v, w) du dv dw,

where f(u, v, w) is the function which expresses the law of distribution of the
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CONSTITUTED OF SPHERICALLY SYMMETRICAL MOLECULES. 435

velocities among the molecules m.* Thus the aggregate value of =Q for the
vdx dy dz molecules m 1n a volume element dxdydz at the point considered is
given by '

>Q = »Q dw dy dz.

Let (uy, vy, wy), (), v/, w)) be the mean values of (u, v, w), (v, v/, w'). Except in
considering diffusion, we shall suppose that the mean velocities of each system of
molecules 1s the same, so that u, = u,/, v, =v,, w,=w,. We shall write U = u—u,,
U’ =o' —u/, and so on, s0o that U=V =W =0, U =V =W =0.

The general equation of transfer of Q, independent of the action of external
forces ist

DQ Q[ Dy, 3, = 0, == O,
(1) v -]—)—? =z [——a% (VUQ)+5§—O{V—]—% 22 00)+5, GOV + g(VUW)}}AQ;

here ]l)_);: denotes the ‘“mobile operator” < C%+uoé% —H)oéa?—/ + 2w, é%) of the hydro-
dynamical equations. The only term of the above equation which needs explanation
is AQ, which denotes the rate of change of Q due to the molecular encounters ; thus
the increase in 2Q which is produced in the element dx dy dz by collisions} in time d¢
is dedydzdt AQ. The calculation of AQ is the immediate object of our investi-
gation.

The motion of the mass centre G of two colliding molecules remains unaltered by
the encounter, and this point may be taken as the origin of a system of uniformly
moving axes, relative to which each molecule will describe an orbit in a plane
through G ; the two orbits will be similar to each other and symmetrical with respect
to the line of apses. If the molecules move with sufficient velocity to carry them
beyond the range of each other’s action, the orbits will each have a pair of
asymptotes ; the asymptotes of the paths while entering on collision are parallel and
separated by a distance p (say), and the effect of the collision is to turn the direction

* Thus the number of molecules m in a volume element dzdydz which possess velocities whose three
components lie between v and u + du, » and v+ dv, w and w + dw, is

v f (uy v, w) du dv dw dz dy dz;
this property defines f(u, v, w). Evidently

J_H S (w0 w) dudvdw = 1;

S (u, v, w) is, of course, also a function of #, %,z and ¢ in general. A similar function f' (v, v, w’) exists for
the molecules ', .

t See JEANS’ “ Dynamical Theory of Gases” (Camb. Univ. Press, 1904), pp. 276-279 ; or BOLTZMANN’S
¢ Vorlesungen iiber Gastheorie,” vol. i., § 20.

1 The terms collision and encounter are used indifferently to signify any mutual action of the molecules
which affects their velocities.

3 K 2
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436 MR. S. CHAPMAN ON THE KINETIC THEORY OF A GAS

of the relative velocity V, (say) through an angle 2y in the plane of the orbits (where
tr—y is the angle between an asymptote and the line of apses), the molecules
travelling away from one another along the second pair of asymptotes with the
relative velocity unchanged. The angle y is a function of p and V, which depends
upon the nature of the molecular forces.

The velocity components (u, vy, W) of a molecule m after collision with a
molecule m’ can therefore be written down,* from merely geometrical considerations,
in terms of the original components (u, v, w), (v, v/, w'), m, m/, x, and ¢, the latter
being the angle between the plane of the orbits (which contains V, and p) and a
plane containing V, and parallel with the axis of @. Thus

(2) Uy = U+ m [2 (v —u) sin®)x—4/{ V= (v —u)?} sin 2x cos (e—w,)],

: m-+m/
, :
(3) V= v+ —2— T2 (v — ) sin’y—/{ V2= (v' — v)*} sin 2y cos (e—w,)],
m+m
’
(4) Wy, = W+ mqu, [2 (w'—w) sin®y—y/{ V2= (w'—w)*} sin 2y cos (e—w,)].

The angle w, is introduced only for symmetry, as it is zero; w, and w; are given by
(5) (' =) (' =0)+ /AL V= (0 = u)’] [Vi'— (/= 0)]} cos w, = 0,
and a similar equation in which «'—w replaces v'—v.  Of course,

(6) V2= (W —u)y+ (0 —v)+ (' —w)

This notation having been explained, we return to the consideration of AQ; we
divide this into two parts A;,Q and A,,Q, the former representing the part due to
collisions of the molecules m among themselves, the latter that due to collisions with
the molecules m’. Thus

(7) ’ : AQ = AQ+ALQ.
Then it is not difficult to provet that

N

(8) Alezjﬂ Uj j j w (8,Q).f (w, v, w) f' (v 0 ;00") duw do daw dut do’ dw'V o p dip de,
—® —®J0 JO

where 8,,Q = Q,—Q in which Q,, is. the same function of (uy,, v, wy,) as is Q of

(u, v, w); thus §,;Q denotes the change in the value of Q for a molecule m, produced

by a collision with a molecule m/'.

# See JEANS' *“Dynamical Theory of Gases,” pp. 284-288; BorTzMANN’s ‘Vorlesungen iiber Gas-

theorie,” vol. i., § 21.
t+ See the original papers by MAXWELL, or the treatises by BorTzMANN and JEANS, already quoted.
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CONSTITUTED OF SPHERICALLY SYMMETRICAL MOLECULES. 437

The value of A;Q may be obtained from A,,Q by making m' =m, ' =, &ec.,
throughout.

The problem before us consists in the evaluation of the integral on the right-hand
side of the last equation, with certain special forms of Q. Before proceeding with
this we shall first write down the forms assumed by the equation of transfer (1) in
these cases.

2. Special Forms of the Equation of Transfer.

The equation (1) is more convenient for use in the equivalent form

[DQ 3Q Dy, 2Q Dv, 3Q p_%}
Dt ou, Dt ow,” Dt ow, Dt

1 05+ 0 S S
- %[ 2 (TQ)+ (VUZ) v ¢, TV)+ E(VUW)}]+AQ.

In dealing with the problem of heat conduction we shall have to put
Q = u(u?+v*+uw?) and Q = u?+v*+w?®; but in this case it will be sufficient to
consider the case of a gas at rest, so that u, = v, = w, = 0, and the left-hand side of

the above equation becomes simply » —Q— On the right-hand side, in finding

Q 9Q Q
ou,” ov,” 0w, R

been performed. Thus, when Q = u?+v?+w?® we have Q = u2+v,2+w+ U2+ V24 W2,
so that 8Q Q_9Q

8u0 8'00 ow,

we must, of course, not put u, = v, = w, = 0 till the differentiation has

= 0, and the equation of transfer becomes*

(9) Bl == 2 L[ U(O VW4 A (207 4007,
t T, Y, 2 a.’IJ

where we have written ¢ for § U?+V2+W?; A, (#*+v*+w?) vanishes because the

energy of the molecules, being wholly translational, is unaltered by the encounters of

the molecules m among themselves. '

In writing out these equations of transfer, it is customary and sufficient to neglect
the mean values of odd functions of U, V, W in comparison with the mean values of
even functions, and also to neglect the differences between the mean values of
corresponding even functions (such as U2 V?, W?) in comparison with these mean
values themselves ; thus we may write U?=V?=W?=g¢, and neglect UV, VW, WU
in comparison with g. Similarly we may neglect UV (U*+V?+W?) in comparison
with U?(U?+V?+W?), and the latter we may calculate as if MAXWELL'S law of

* The suffix 0 on the right-hand side is to indicate that we are considering a gas at rest. Similarly in
equation (10).
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438 MR. S. CHAPMAN ON THE KINETIC THEORY OF A GAS

distribution of velocity held exactly. This is because we shall only be considering
slight disturbances from the uniform steady state.

Thus from Maxwerr’s law of distribution® we find that ¢ = (2hm)7,
U2(U2+ V2+ W?) = 5¢°  Putting Q = » (v’ +v*+w?), and taking u, = v, = w, = 0, we
find that 22 = 5¢, & = 2

(]

o &= &0, 50 that th ion of
P 7, 30, dw, so that the equation of transfer takes the form

VT)I—)ZU(U2+V2+W2)0 = —b5wg —g—% + Au (1?02 + w?),,

or (since, as we shall see later, on p. 447, the left-hand side of this equation is of a
lower order than the terms on the right)

oq 20 020 o2
(10) bug = = Av (WP + 07+ u?),.

We next put Q = »? and Q = v in order to consider the phenomenon of viscosity ;
in this case, of course, we must take into account the mass velocity of the gas. The
substitution of these values of Q in the general equation is quite straightforward,T so
that we set down the results at once :—

[Ou, Ov, ow > ou,

—2 i 1] Z70 0 ) — 2

(11) 3VQ\am+ aer————az + 2vq o Au?,
¢ oV, 8w0> _

(13) vq <——8x + ——ay = Auw.

We now turn to the calculation of Au? and Au (u?+v*+w?),; the value of Auv will
not be calculated directly, but obtained from Aw? by transformation of co-ordinates,
and the value of A, (u’+v°+w?), will ultimately be eliminated from our equations,
and so need not be calculated. _

First of all we shall calculate the values of ¢,Q from equations (2)-(5) for
substitution in (8). Since, however, several terms of §,,Q disappear on integration

21
with respect to ¢, it will be most convenient if we immediately calculate j 3,.Q de.
0

2m
3. Values of J 0,5Q de.
0
In calculating 8,,Q we shall find it convenient, partly for immediate brevity, but
much more for the sake of a subsequent transformation of the variables of integration

in (8), to write
(13)  (m+m)(U-U) =X, (m+w)(V'=V)=Y, (m+m)(W-W)=172,
(14’) WLU"‘}"mlU, = Xl’ ’mV+m’V' = Yl) mW-]—m’W’ — Zl‘

™

T See JEANS’ ﬁreatise, §§ 336, 338.

* In which f (u, v, w) - <hm>3lz g TnSV?,
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CONSTITUTED OF SPHERICALLY SYMMETRICAL MOLECULES. 439
Thus
X2+ Y24+ 272 = (m+m/)V 3,
and
(15) (m+m') (mZU24+m/ZU0%) = V2+mm/'V 3,

writing V> = X2+ Y?+Z?2 Also, we have
(1t6)  (m+m)U=X,-kX, (m+m)V=Y,-FY, (m+m )W =Z-kZ,
(17)  (m+m)U =X +kX, (m+m)V =Y, +kY, (m+m/)W' = Z +kZ,

/
where k= —2—, I =—2_.
m+ m—+m

75
Since the mass velocities of the two systems of molecules are the same, we have
(m+m) (W' —u) = (m+n/) (U'-U) =

and two similar equations.
Considering Q = #?, it is easily seen that

21 2
j 812u2 de = j (u122—u2) de
0
(_m+_m) - [(w —u) (mu+m'v') 87 sin? x+m/ {V2—38 (v —u)?} = sin? 2x],
where we have expressed the result in terms of sin?y and sin? 2y ; on making the
P X X g
above transformations we obtain
{Xi X+ (m+m/)u, X} 4rsiny +

(18) fsmmde e (Vo4 72— 2X?)rsin®2y.

/); ( /)2
We next consider &,u (v?+v*+u?),; we write u, = u+a—a cos(e—w,), where
a =2k (W —u)sin’x, o =K/ V2—(1/—u) sin 2x, and similarly for v,, and wy, Since

U+ 01+ Wyt = 2 (u+a)—22 (u+a) o cos (e—w,)+2a”? cos? (e—w,),
we have

2m
QL j s (U2 + 017+ 0.7 de = (u+a) = (u+a)+ % (u+a) Sa+ 0’ (u+a) o cos w,.
mwJ0
It is easy to show that

'S (u+a)d cos w, = {u (Y2 + Z3)—vXY —wXZ} sin? 2y,

( + l>4

and from the last three equations it readily follows that

(19) f" Sip 4 (u+ 0%+ w?), de = (ﬁ%ﬂ (2X, XX, + X V2 +m2XV,?) dr sin? x
om? . '
- (m+m/)5 (3X2XX1_X12X2) [d sm2 2x,
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440 MR. S. CHAPMAN ON THE KINETIC THEORY OF A GAS

Integration with Respect to p.

The integrand of equation (8) contains p explicitly in the term p, and implicitly
in x (which is a function of p and V,); the latter occurs only in the form sin®yx and
sin® 2y. Hence to integrate with respect to p we need only know the values of the
two integrals®

47V, j sin® x . p dp, 7V, rrsizﬁ 2x . p dp,
0

which are functions of V; ouly. It is sufficient, at present, to denote them by the
symbols €' (V,) and Q" (V,), leaving their further consideration till later. As the
functional relation between x, V,, and p, and consequently also the values of
the above integrals, depends on the law of molecular interaction, which will differ
according as the collision in question takes place between two molecules m, two
molecules m/, or one of each kind, we distinguish between the three cases by adding
the suffixes 11, 22, 12 respectively to &' (V,) and Q" (V,).

Thus _

(e r

(20) A= T [T1T)] 2 XXt (et ) Xy @1 (V)

(m+m

+& (Y2 +22—2X2) Q" 1, (V)] f (w, v, w) f (o, 0", ') du dv daw da’ do’ dav!.

(21)  Apu(ut+oitw?), = (—J”’L7 [T]TJ] X =XX, 4 XV 4 XV, @ (V)

m—+m

=2k (8XZXX, —~ X, 2X2) Q" (Vo) 1S (wy0,w) f (w0 ;'Y dwdw dav du’ do’ dav'.

In the case of a Maxwellian gast the expressions € (V,) are independent of V, so
that the integrals just written can be evaluated in terms of mean values of functions
of U, V, W without any knowledge of the functions f(u, v, w), f(«/, 7/, w). In
general, however, this 1s not possible ; we require some knowledge of these functions,
which express the law of distribution of velocity, in order to make further progress.

4. The Law of Distribution of Velocity.

It is well known that in a gas which has had time to attain a uniform state the
functions f, f” have the respective forms ‘

312 N3z
<hm> o~ hn=U? Fum o~ hm'=U"
2
v v

* The factors 4wV, and =V, are added merely for convenience.

t Also in the case of a gas whose molecules are point centres of force which affract one another
according to the fifth-power law. This case, among others, is considered in Part IL, and probably is
nearer to actual fact than MAXWELL’S case.—Note added October, 1911,
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which we shall denote by f,, /. When there are slight inequalities of temperature
and mass motion in the gas, we shall suppose that

S=L{1+F UV, W), =7 {1+ F (U, V, W),

where F and F’ are expansible in the form of power series (without the constant
terms) in the variables (U, V, W) and (U’, V', W’) respectively. The coeflicients
will be small quantities which are functions of the velocity and temperature, and
their derivatives, at the point considered. Thus F and F’ represent the small
disturbances from the mnormal law of distribution, caused by the slight lack of
uniformity in the gas. MAXWELL and BorrzmaNN* considered that the terms of
the first three degrees are sufficient for the adequate representation of the disturbed
state, and I shall follow them in this assumption. Thus we write

(22) F(U,V,W) = (2hm)" (a,U+a,V +a, W) +2hm (§Z0,, U2+ 220, UV)
+(2hm )2 (3201, U+ 5201, U VE+ 0y, UVW)
where the factors (22m)'"?, (2hm), (2hm)*? are added merely for convenience in the

integration. We shall have a similar equation for ¥, in which m, @, a, ... are
replaced by m/, &/, &,, .... Since, by definition,

v

j” f(u, v, ’w) dudvdw =1, jjj I (u’, v, ’M/) du! d' dw' = 1,

we have

Itay+anta, =1, 1'1’0/11'1’05/22'1'00,33 =1,
or
(23) O+ gy + gy = 0, o'+ &ty = 0.

* By MAXWELL in his memoir “On Stresses in Rarefied Gases,” ¢Phil. Trans.,” 1879, or ¢Scientific
Papers,” vol. ii., p. 681 ; by Bor1zMANN in his ¢ Vorlesungen iiber Gastheorie,” vol. i., p. 185. In each case
the assumption was made in connection with a Maxwellian gas, but there are good grounds for believing
that it is equally valid in general. ~As neither MAXWELL nor BoLTZMANN considered it necessary to give
any justification for their procedure, I deliberately followed the same course, more especially as the
attempt to make the step perfectly rigorous would have necessitated the introduction of much mathe-
matical analysis which would be out of place here.

I should also mention that ENskoc (¢ Phys. Zeitschrift,’ xii., 58, J anuary, 1911) has made an attempt to
determine directly the form of the function ¥ (u,v,w), applying methods of integration, similar in many
ways to those used in this paper to evaluate AQ, to an equation arrived at by BorrzMANN (¢ Vorlesungen,’
vol. i, p. 114). From the expression for F (u, v, w) thus obtained Enskoe deduces values of the coefficients
of viscosity and thermal conduction for a simple gas.

I am indebted to Prof. LARMOR for the reference to ENskoa’s work, of which I was unaware till after
this paper had been communicated to the Royal Society.—Nofe. added October, 1911, Some of these
statements are modified by the last note on p. 483.

VOL., CCXI—A. 3 L
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442 MR. S. CHAPMAN ON THE KINETIC THEORY OF A GAS

Similarly, since U=V =W =0, U=V =W =0 by definition, we have
(24) 200+ Qi+ Ayt Mgy = 0, 20/ 1+ + 0+ a s = 0,

and four similar equations.*
We require the mean values of the following functions of U, V, W :—

U* = (2hm)™ (1+ay), UV = (2hm) " s, U = (2hm)= @y, UV? = (2hm) ™ a1y,

U (U2 V24 W?) = (th)—3/2 (it O+ i) = —2(2hm) P ay ;

similarly for the second system of molecules.
As usual, 6 being the absolute temperature, we have (2A)™ = R6. The various
components of partial pressure due to the first gas, p,,, p,, &c., are given by

v —

pxx = PI—Tg = Zh (1+a’11)5 ]O:cy = PUV = i a’12
since p = »m ; the mean hydrostatic pressure p is given by
p= %(sz+pyy+pzz) = ’é‘V}; (3"‘0511“"“22‘1"0033) = é%, =Ro;

similarly for the second set of molecules.
" In substituting f#” in the equations (20), (21), we shall write

h? AR L X"
S = LS L+ F+F) = <M::f%> ¢ T (L P4 T)

(by equation 15) since FF’, being the product of two first order small quantities, is
negligible.

* Tt should be noted that the above expression for ¥ is of the lowest degree consistent with the
satisfaction of the requirements. The function ¥ must provide for small changes in the mean values of
even functions of U, V, W, and also of odd functions, both these changes being of the same order. The
terms of the second degree do this for the even functions, a1, @z, ass being of the first order ; it might at
first sight be thought that the terms of the first degree would provide for the odd functions of U, V, W,
but this is not so on account of the conditions U =V = W = 0. Hence the terms of the third degree
must be present, and their coefficients must be of the same order as ay, ay, &c—Note added October, 1911,
See the note on p. 483,
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5. Reduction of the Integrals.

The evaluation of the expressions (20) and (21) is facilitated by changing the
variables (U, V, W), (U, V', W) to (X, Y, Z), (X,, Y}, Z,) in accordance with equations
(16) and (17). The Jacobian of transformation is easily found to be (m-+m/)=% and
the limits remain as before, viz., — o and + . The two integrals are now of the
form :

A j H jj j e 1% O (V)4 (X, Y, Z, X, Yo, Z) (14 F+F) dX dY dZ dX, dY, dZ,

where v is an integral polynomial in the given variables; ¥ and F’ are also
polynomials in these variables. Evidently only those terms in the product of v, and
(1+F+F’) which are of even degree in each of the six variables separately will give
any result upon integration. It is easy, though tedious, to pick out these terms;
evidently if + is of odd degree in the six variables combined, only those terms
of F and F" whose a-coefficients have an odd number of suffixes will need to be
considered ; similarly, if v is of even degree, we need only consider terms in F which
have a,, a,, ... for coefficients. Having picked out these terms we are left with a
number of integrals of the form

J j J j j j lo~ XX ) (V) XHYmZnX 2V 20 7% qX dY dZ dX, dY, dZ,.

The integration with respect to X,, Y;, Z;, can be carried out immediately—most
conveniently by changing to polar co-ordinates. We do the same also in the case of
the variables X, Y, Z changing to the variables V,, 6, ¢. The integration with
respect to the latter two variables is simple, and there remains an integral of
the form

[[Jema ) vimav,

,
hmﬁ,, ghm, or hm’ according as Q(V,) or A has the suffix 12, 11, or

where a =

22 respectively. .

We shall consider this more particularly later; at present it is sufficient to denote
it by a symbol. As we shall only need to consider the three cases n =2, n =3, n = 4,
it is, perhaps, most convenient to denote it by P, R, S respectively, instead of
adopting a more general notation. To distinguish between the different cases arising
from the various functions Q (V,) occurring in the integrand, we add the same dashes
and suffixes to P, R, S. Thus we have integrals P, P, P”,, and so on,
corresponding to the cases when in the above integral n =2 and Q(V,) has the
special forms €, 1, Q";;, and so on : similarly for R and S.

Though the execution of the processes indicated is rather lengthy, it is quite simple
and straightforward, so that, without entering into the details of the calculation, we

3 L2
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shall quote the results forthwith. After simplification by means of the equations
(23) and (24), we obtain the formulze

12 / 7\ 38/2 \1/2 i \
5 _ T 777} hmm 2 , a 5% hmm
(2 5) A]??’/ = - 4:77' / vy < > I:% <]_L / My 'M'O q;bsle '—*751/’3 P/]_Q — 5 R,] 9)

(m+m/ ) \m+m/ m m+m/

hinm/? [ay o
+3(an—a'y) Pt —j <—M1—1 + =R, |

m4m/ m

) 12 ’]/ 1\3/2 /o\1/2 2
(26) Alzu(ug—l— ’Ug—l-/wg)0 = 471/ e < R > <g> [15 W— < 0611/2 /1/a> R”l"

(m+m) \m+m// \h m+m/
/
— {42 mm (]_ ]u1+ b— ]ﬂl‘]§2> < 3 qZ/3 2> (m 00 — /rn a/ )} P/12]

where for convenience we have written %, and £, for the quantities given by

hmm/ R/ o A/ \? S
o7 b= 2 R =<5 > S,
(27) Y Y4/ P, ? "m4m/) Py,
By putting m=m/, v=», a=d in the above equations we get also the
following :—
‘ him\32 hm
(28) Ap? = —4m? < 2W> 30 an R
3/2
(29) Apu (W07 +u?), = 4m? <];m> Sy (2hm)2 R,
‘e

By transformation of co-ordinates we obtain the following equations from (25)
and (28) :—

(30) Apuw /
12 / 1 \3/2
L g, TV (hmm > [ﬁ (m-tm)(crg—atrg) Pyt 2 o hmm” <0&12 12> R,

(m+m/)* \m+m/ m+m/ \m  m
a al,’ a o o/
5 (2h) ! {% <m—a]§l”—'m’§”) T <;ﬁ% m 3“)} {P/m > m+m/ R H
” Tom\? hm
(81)* Ay = —4dm)? <;W> S0 auR

* All the formulae (25)-(31) were in the present form before the paper was revised, with the exception
of (26). Their calculation was given almost in full, and was performed by essentially the same methods
as those explained above. The work was made rather more lengthy than necessary by the use of an
unsymmetrical transformation of the integrals in place of that given in equations (13)~(17), to which I was
Jed while endeavouring to simplify the caleulation of Aygu(u?+1%+w?). The calculation of Au(u? +* +u?)
was also complicated by the fact that the gas was not assumed to be at rest; but on revision, despite these
simplifications, I decided to omit the routine calculations altogether.

Fquation (26) was not given in the puper as originally written because it is connected with the
conductivity of mixed gases, and I was then unaware of any experiments on the subject which would
malke go tedious a caleulation worth the while. I have since found such experimental data, and have
therefore worked out the formula (26), the vesults of which (as will be seen in Part IIL.) show very
satisfactory agreement with the observations.— Note added October, 1911.
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6. Calculation of Au.

Finally we turn to consider A,u, the calculation of which is rather different from
that of the foregoing quantities because u, and «/,, v, and */;, w, and ', are now
different. We require A,u in order to determine the coefficient of diffusion.

It is evident from equation (2) that

o m/ ,
jo S de = 4 o (W —u),

so that
Au = w m’ HJ j” Q' (Vo) (W =) fu, v, w) ' (W, 0, w") dw do daw do do’ daw'.

m-+m/

In the present case we may neglect the small deviation from MAXWELL'S law of
distribution of velocities, and thus avoid making any assumption as to the form of F.
This is so because in this case (unlike all the preceding cases considered) the unit
term of (1+F+F') in the expression for f#” leads to a term in the final result, so that
the terms which would result from the inclusion of ¥ and F’, being multiplied by the
small coeflicients o and o/, are negligible to our order of accuracy. The term arising
from the unit in (1+F+F’) is itself a multiple of w/;—u,, which we assume to be so
small that its squares and higher powers are negligible; u/,—u, being thus a small
quantity of the first order, the terms arising from F and F’ are of the second and
higher orders of small quantities.

Thus we now have

: 2 N\ 3[2
ff/ — <h mm> e~h[an§: (1 —0)24+m'= (0 —'p)%]
2
T

2 N\ 8/2 —_—
— <h mm > 6—h[(m+m’) S+ 23 (mue+m'w'o+x) u—m'S (wo+a)2—mSug?]
™

where we have written (z, y, 2) for (u—w/, v—2', w—w'), so that V= a’+y*+2°
Changing the variables in the above integral to (z, y, z) in place of «/, ¢/, ', and

recalling that
1/2
jco o- Ut Jp — <1r>/ oPla,
— a/
on integration with respect to u, v, w we obtain
/ (

m hmm! 22 D’ (o207, cos A+p?)
Ay = —v/ o {T (m+m’)} 1y (V) e mrn 000 da dy dz

where we have written (V,?—2pV, cos A+ p?) for = (x+u',—u,)?; thus

p° = (W= )2+ (Vo= v 2+ (W —wy)2,  pVyeosh = a(v/y—uy) +y (v —2,) +2(wy—wy,).
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Since, as has already been mentioned, p* is a small quantity of the second order
hmm’ o

the term ¢ m+n" may be neglected, since it is equal to unity to our order of approxi-

mation. Transforming the variables @, y, z in the last integral to polar co-ordinates,
we have

! ’ hanm!
A12u = —n m { hamm, 7 } Jjj V 3C2 1J(V )e m+n’ vl

m+m’ 7 (m+m)

{g L <hmm 2pV, cos >\>}dV0 sin 6 cos 6 d6 d¢

o 1l \m+

by putting = V,cos 6, &c. It must be remembered that X is a function of 6 and ¢,
since

!

= 6+ Lo sm@cos ¢+ 2o="0 gin 9 sin 4.
P P

14

COS A =

All the terms of the exponential series occurring in the integrand of the last
integral are negligible (on account of the factors p? p’, and so on) except the unit
term and the term of the first degree. The unit term leads to a null result on
integration with respect to 6 and ¢. The first degree term alone contributes to the
final result, which (in our previous notation) is easily seen to be

7\ 3D

K Y
/> (u o‘“uo) P

,
g -z, ) <hmm
m+m /.

(32) Amu =37 m+m/

If we put m = m/, u, =, v = we find that A u =0, as is otherwise evident,
since the momentum of a system of molecules is unaltered by their mutual encounters.

Having now calculated all the values of AQ which we require, we proceed to
substitute them in the various special forms of the equation of transfer, in order to
obtain expressions for the coefficients of viscosity, diffusion, and conduction in simple
and mixed gases.

7. The Coefficient of Visqoséty of a Setmple Gas.

First considering a gas composed of molecules of one kind only, we substitute for
Av? (which in this case equals A;u?) and Auv from equations (27) and (30) in the
special equations of transfer (11) and (12) respectively. We get

L\ B, — % o, a’wo\_ o,
i (27r> 50 @l = q<8 +8y+3z) 7 5

] 3/2 h a a
st (M R = g (G204 ).

Remembering that a,; = 2h (Pre—p), s = %}5’ .y (see p. 442), and comparing these
14
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equations with those of a viscous fluid whose coefficient of viscosity is u, viz.,

_ s (0u, , 90, 8w0>_ %]
Pe—p = [<a oyt o) T 2w

_ oV, 8uﬂ>
Pay = <8m "oy
we obtain the following expression for u:—
. _ by <27r>3/2 1 5 <27r> 2
33 = = .
(55) “ T 9hm \lan) 7R, T 4k \m) 7R,

8. The Coefficient of Thermal Conoluct@"vity of a Simple Gas.

We next substitute for Aw (u?+v*+w?), in equation (10), and so obtain

\8/2
5vq gq = +4my <ZZ"> oo oy (2hm)2 R,

- i (5->3’2 & (2hm) Y, T (04 VWY
LT

on substituting for @, from the equation on p. 442. This equation is simplified if we
recall the value of u from equation (32). Thus*

é% = — 2’0 U(U2+V2+W2)

If we now substitute for U (U?+ V24 W?) in the equation (9), we get

Dq — 0 (15 89>
Dt =+ m%z8w<7 ox

If we compare this with the equation of conduction of heat in a gas at rest, whose
thermal conductivity is S—viz., with

Do L 0 00
C”"’Dt 7,21,',2530<Sa—x>

(where C, is the specific heat at constant volume)—and remember that ¢ is directly
proportional to the absolute temperature 6, we find that

(34) S = 3u0,.

* We can now see why the term v I%f U (U%+ V2+ W2) on the left-hand side of the equation preceding

equation (10) is negligible. The ratio of its coefficient v to the coefficient of U (U2 +V2+W2) on the right
hand (viz., in Au (u? + 92 + w?)o) is now seen to be p/p, which is an exceedingly small quantity in all gases
under normal conditions,
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9. The Coefficrent of Diffusion.

The general equation of transfer (1) is true for any system of molecules in a gas,
whether in the presence of other systems of molecules or not, provided that no
diffusion is taking place (this restriction arises in the elimination of the external
forces,* where it is assumed that Aw = 0, which is true, of course, only when the
restriction just mentioned is satisfied). The form of the equation of transfer which
is applicable to the more general case now under consideration, where diffusion is
taking place, ist

v @Q = 2 l:-— s ag — —Q (VU(%3 + LX—?—Q] +AQ,
@ ox ox m- ou,

where X is the component of external force. If we put Q=1u, and suppose that there
are no external forces, and that the motion has assumed a steady state, the equation
becomes

@ﬁ = MAy,

ox
where we have neglected products of u,, v,, w, as being small quantities of the second
order ; similarly we have neglected such terms as UV, and have given »mUQ its
proper value p.

The equation just obtained applies to the first system of molecules, p being the

partial pressure due to this system ; there is a similar equation

8 ’

5% = m/ Ayt
for the second system. Since the temperature is supposed to remain constant, we
have

_2(s)_ Lé A _ 1

dx o K2h 2h 0z’ Ox  2how’

Now, from equation (31), it follows by symmetry that

’ —
m Dy = —mA L,
so that
v oy , omm! [ hmm! P, , p
= = — Eon = ,g, vy -—'—-—*’—/ ~ m™o 2]?/ (/M 0—"2/(/0)1)12.
ox ax m+m \m-+m

The total flow of molecules of the first kind per unit area per unit time is clearly

oy

vy, and also (by the definition of the coefficient of diffusion D,,) is equal to —Dj, o

* See JEANS’ treatise, p. 279.
T Lbid., p. 278
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Hence
oy
iy = —Dmgg?;’ D12 é‘“ = D12 o

by which the preceding equation may be reduced to

Ov 4
ox +3m+m’

mm! [ hmm/ N2 _, ov
()" esna () PD 22

This gives us* as the expression for Dy,

N1/2 1
35 | D, = ¢ 1/2<m+m> ' .
(35) 2 = TET i) (v + ") P/,

By putting m =m/, v =/, we get the following expression for the coefficient of
diffusion D,, of a gas into itself :—
: 3 (m\"? 1
36) . D, =3(™ s L
(36) D= 2(5) ) -

14

10. The Coefficvent of Viscosity of a Compound Gas.

As in dealing with the case of diffusion, we must now use an equation of transfer
for each system of molecules. Writing

Uy 5 <8u0 oV, 8w0>_ o, | Oy _
2 ox ox HEY oy | oz -E’ ox + oy K,

where (since the various systems of molecules are not supposed to be diﬁ’using
through one another, so that u, = v/,, &c.) E and F are the same for both systems of
molecules, by equations (11) and (12) we have

Au? = VqE, Au? = V,q/E,
Auv = qF, Av'v' = /q'F.

In the expressions already obtained for A%, Ayuv (viz., (25) and (29)) there occur
terms containing the coefficients a,, o/;. As we have already seen in discussing the
conduction of heat, these coefficients depend upon the existence of variations of
temperatures in the gas. We shall here suppose that the gas is at a uniform
temperature throughout, so that the said terms will disappear.

* Since this paper was written I have found that the expression (35) had already been obtained by
LANGEVIN (* Ann. de Chimie et de Physique,’ (8), v., 245, 1905), who applied it to the motion of electrons
in an electric field. The present proof is shorter than LANGEVIN’s. ENskoa (‘ Phys. Zeitschrift,” xii.,
533, July, 1911) has also published a simplified proof on lines not unlike those of the above proof. I am
indebted to Prof. LARMOR for the reference to ENsKoG’s paper (which appeared while this paper was in
the hands of the Royal Society), where I found the further reference to LANGEVIN’S theory.—Nofe added
October, 1911.

VOL. COXI.—A., 3 M
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Thus we have

12 1\ 3/2 19
_ mm himm . hm
Ayt = — (m+m/)? <m +m/ > H%"P/m +3 m4+m’ RH”} e

] -
- {%P,IZ— ‘é— hmm/ R”lg} Oban B

m-+m
If we write
I4

(37) b= (32 ) f3e,

m4+m’

and substitute for P’, in terms of the coefficient of diffusion D,,, the equation for
Au? is simplified to

w' m' 1 m’ A
Bt = =% (m+m/) Dy, {<1 k _m_> = (1-1) Oﬂn}'

Again, by means of the expression obtained for u, the equation (27) for A’

reduces to
V20&n

Agu? = — ——1,
1 4h*mpu,

We get similar equations for Aju” and A% writing o' for the coefficient ot
viscosity of a gas composed only of the second kind of molecules. Hence,
remembering that AQ = A;,Q+A;,Q, we have

E - A.an + Ba,n ) E = CO’IH + DO&IH N

where / . R
A=- v—:v’h(mﬂ-m’)Dil;<1+k%)—§7i;’
/
B= Vlu’h(mim/)ﬁl;;(l k),
C= V-IV— u’h(ml-l—m’)—l%;(lﬁk)’
« ,
D=- v—ly—,u’h(ml-km’)Dl—l;<1+k;m77>_—27‘;7'

We next substitute for @, and oy, their values g—v}—b Paes %{3 ', respectively in the

above equations, and solve so as to obtain p,,+p’,, (the total normal pressure parallel
to Ox) in terms of E.  After a little reduction we find that

, A+ B +C+D
‘ pzz-"plm = - A/D/_B/O/ E’
where
’ 7 E
p=Ya(1k )l m=Gi-n =0, D/:l,G<1+zc"—”7>+%.
v \ w M v w

s
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In these last expressions w and «’ are the specific gravities of the two component
gases referred to a standard gas whose density at the pressure and temperature of
the compound gas here considered is p,; and G is given by

(38) G=_2 11

Since the partial pressures of the component gases are directly proportional to v, »’

=Y
<for p=gp P = 2h> we may write

<1+p >p+{2 (1-k) + <1 “1/>} pp*+ <1+lc——/wl>p’2
G\

1 5 (w+w) } < >

M<1+k—,>p+{ ]cG-&-:MM pp'+ = 1+k

ww'

pzz +p/za: = -

Similarly we may show that p,,+p',, is the same multiple of F. Hence, recalling
the denotation of E and F, and comparing the said equations with the equations of
pressure in a medium whose coefficient of viscosity is wuy, as in § 7, we obtain the
following equation :— :

<1 +k 7’—”—,>p2+ {2 (1—F) + 1—<l +l>}pp’+ <1 +k 7—‘i/>p’2
w M w

Ll pp®) oy (o) } (LAPWS
M<1+kw,>p+{ o ZG+ PP+ = <].+kw>p

(39) ' Mg =

11. The Coefficient of Thermal Conductivity of a Compound Gas.*

From equations (26) and (29) we see that Au (v?+v*+w?), and Avw (v?+v?+w"),
can be expressed as in the following equations :—

Au (U2 +v+u?), = —2v {A (2hm) =2 a, + B (2hm/) "2 o/},
A (W2 + 02+ w'?), = =2/ {C (2hm) ¥ a,+ D (2hm/)*? o, },
where A, B, C, D are written for convenience in place of some rather long expressions
which can easily be written down from the equations cited.

Remembering the values of @, and ', as found in §4, and substituting from
equation (10) for Aw (u?+2*+w?), the last equations may be written

5 2 = » (A T(T+ VW), +B U (0P Vo W),

squl g_g_, — Vl (C U(U2+V2+W2)0 +D UI (UI2+V/2+W12)0).

* - Added October, 1911,—See the footnote to p. 444.
3 M 2
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Since ¢ = 1/2hm, so that mq = m/q’, on solving for U (U?+ V2+ W2), we obtain

(AD—BO) U (U*+ VE+ W2), = 5 <9 p_2 B>9§;q

(AD-BO) T (U VA + W), = (L a- L) 2.

If we multiply equation (9) by m, and add the corresponding equation for the
second system of molecules, we get

3(v+s) D04 = -z 2 om T (O VW), 4/ T (O VW),

since the sum of the remaining terms
mAy, (U + 02+ )y +m/ Ay (W2 02+ w'?),

vanishes. This follows from the principle of conservation of energy, for the last
expression represents twice the rate of change of the combined energy of the two
systems of molecules due to their mutual collisions, which is evidently zero.

We substitute the values already obtained for U (U?+ V?+ W?), and
U (U?+ V24 W"), in the last equation, and compare the resulting equation with
the equation of conduction of heat in a medium at rest. As in the case of a simple
gas (§ 8) we obtain the following expression for the thermal conductivity 3, :—

/ !’ . . .
— 5|2 VoA om o m Rpb (C,):s I
Y= 3[mD+ A "mzo} v+/ AD—BC

In this equation we must substitute the proper values for A, B, C, D. I shall not
enter into the details of the calculation, which is rather long and complicated, but
will simply quote the result in the simplest form. It must first be mentioned that
(C,)2, the specific heat of the compound gas at constant volume, is connected with
the same constants for the component gases, viz., C, and (',, by the following
relation :—

. ‘ _ pwC,+pw'C,
(394) (C = B
using the notation of § 10.

The formula finally obtained is

(40) g = 5]owC +p'w'C, Ep®+ Fpp’' +Gp”™
. p+p’ VW , w o,
: E;p +F, pp +G/710
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where E, F, F;, G are given by the following equations, in which the quantities
k, ki, k; have the values assigned to them in equations (27) and (37) :—

-

B = §h—§ (1=h)—§ (bi—k) 7+ >

G = §b—§ (1-k)—F (b—k) L + 2
(41) <

ww

ey, 340k L ) (-0 g LT

1 (w‘+zuf)2 poDis ? wtd

/\2 /
P gD, ()= D 0 (1) (14 58)

\

This completes the first part of the paper. We proceed now to the evaluation of
the quantities P, Ry, £, £y, and %, in some special cases.

Parr II.—Ox CrrTAIN SPECIAL ForMS 0F MOLECULAR INTERACTION,

12. The general expressions which we have obtained in §§ 7-11 contain four
integrals, Py, R/}, R”1,, 1, given by the equations

® _ hmm!

rP/m = jo V04Q’12 (Vo)e m+m’

(w2 |
/ * T 60y ,—MML—I,VO? . T

‘ R]2 = j Vo 912 (VO)@ m+m dvm Sl2 = J V 8() 12( 0)6 m+m dV

MV, R= [ V(W) v,

The remaining 1ntegra1s P’;; and R”}; can be obtained at once from P’12 and R”,,
by changing m to m/, and Qy, to Qy;.
We recall the values of &', (V,) and Q"},(V,) from the latter part of § 3. They are

(43) (V) =4aV, st pdp, @V =V, | sint 2. pp

where 2y is the angle through which the direction of the relative velocity V, is
turned by the mutual action of the two molecules m and m/, while p is the distance
between the asymptotes of their orbits relative to their mass centre (§ 1).

As the above expressions cannot, however, be integrated except in certain special
cases (which fortunately include the most interesting cases) we consider these in
order.

18. Regid Elastic Spheres.

The simplest case is that of molecules which are rigid and perfectly elastic spheres,
of radii o and ¢’. Clearly if p exceeds o+¢’ the spheres will not affect one another’s
motion, so that x = 0. When p is less than o+4’, it is evident that

sin y = 2.
X oct+a
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Henece

o +o’ 2
@a(V) =4V, [ 2 dp = 2V 4oy,

and

’

, . ‘
Q"5 (Vy) =V, j (o+d’)? sin® 2y sin x cos x dx = 7V, (a+d')%
0

Consequently we find that

(44) P’lz = 7r(0'-|-—a- 2J1) 5 o m-}m dV — ‘7!'(0'—!—0',)2 <')Z/I':;£b> ,
2 m+m’\*
T )
Ry =7 (c+d') < p—; >
S =127 (a'+a-’) ( mtm > .
N
From these we obtain the equations
/ of 1Y " of 1\
(45) Pu = 3270 <m> s R 1 = 6470 <%> s

(46) k=

— 6 —_
¥ kl = 5 kz -

DO

8
5

e

so that in this case the constants %, &, &, (defined by equations (27) and (37)) are
numerical constants; in general, they are functions of the temperature (z.e., of 7).

14. Molecules which are Point Centres of Force.

We next consider the hypothesis that the molecules are geometrical points
endowed with inertia and repelling or attracting one another with forces which are
functions only of the distance between their centres.

Let ¢, (r) be the mutual potentlal energy of two molecules m, m’ at distance », and

let us write ¢/, (r) in place of 2% " " 45 (7). The first two integrals of the equations

of motion of the second molecule in terms of co-ordinates », 6 with the first molecule
as origin are as usual

70 =4,  L(i*+1°6) = ¢+ B

where A and B are constants. Eliminating the time from these equations we get

2 2 8
{@@ +7 } % = ¢'1s (r)+B ot <%g> - _2}_?2 (9 (r)+ B} =%
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Taking the direction of one asymptote for initial line this has the integral

o= [ [ Fva]

Since V, is the relative velocity before collision, and p is the perpendicular from the
origin on to the asymptote, we have

A =pV, B=4VS —¢ (),

r A4 ot , —-1/2
0 = jm ['1%2'—7"2"” 2‘52’%%)’2‘ {‘]5 12 (7')”4’,12(00)}:] dr

so that

The apse is given by the vanishing of the expression in square brackets. If r,is
the positive root, we have

_ o :),.—4 .3 9t , o ]—1/2 )
=[G 2 () =a (o)} |
since x is the angle between the asymptote and the apsidal radius vector.

For some purposes it is more convenient to transform the variable of the last
integral to 5, where 5 = pfr. We thus get

R e o

n, being the least positive root of the expression in square brackets.

No further progress can be made without knowledge of the form of ¢, or ¢, The
simplest and most natural form to consider is that corresponding to the case in which
the molecules attract or repel one another with a force varying inversely as the
7y, power of the distance. In this case

—_ " K12 / — I______K_ng
pia(r) = j e T dr = —mm/ s el

9512 (r) = —=(m+m) (—‘—1)“‘,;7 ¢z () = 0,

where K is a constant depending on the nature of the molecules.
Hence

_ Mo 5 2K, L n—l]‘llz _ 1’lol: L 2)1&—1]—1/2
X—Ll:l ™ (%-—- )V L d”—jo L= <0t d”

1
— 73— 1 }"’2—1 Vv Kf_‘l
*= {ZKIQ (m+m/) o

where®

Thus x is now a function of a only.

* When the forces are attractive the sign of «»~! is reversed. In the text the case considered is that
of repulsion, :
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We now transform the variable in the integrals @/, Q” from p to « so that

‘ 4
pdp = K',V, m-1ada
where

(47) K, = {Hlmtnd )

Thus we have

k 4 e
(Vo) = K'wVO‘ a1 j drsin® y. ada,
0
T S ’
Q" (Vo) = K’lzvol ma—l j 7 sin® 2x . a da.
0 ,

The definite integrals in the last two expressions are pure numbers depending on
ny, alone.* We ghall denote them by M\ (nmy,) and A (ny,) respectively. We thus
havet

4
@ (Vo) = K',\ (nl2) Vo1 ma=1,
RO S
", (Vo) = Ko\ (ny,) Vo1 ma=ly
so that, as in the case of moleculés which are elastic spheres, Q” is merely a constant

multiple of Q' If we substitute the last expressions in the integrals for P, R, S (see
equations (42)) and remember that |

hmm N\ Yokt 1
J Vot g dV = .%.<"lq_’.’_’:ﬂ7;~> T (3k+1),
0

hmm
we find that

-

Py = FKON () (B 5 p (32
12 = 20 1A \Tlgp Ty - >

77/12— ]_

3——2 ——2
(48) < P/, = 4K/, (n11)<—2—>% m,—111<3__ 2 >, R, =%K,117\”(7’?/11)<}'§7‘Z> m,—lF<4_ 2 >

}M’)’l 7’2,11—1,

N (n,) 2 . 2 w2 \/ 2
pogtm(p2o) pmg(s- o) k= (3o (4= —25)
§ ¢ >\, (%12) 12"" ]. kl 5 \3 7@12—- ]. ? 20 3 %12— 1> n12""‘ 1

where

* And on whether the molecules repel or attract, there being one value for each case, corresponding to
each value of n.

T These formule are true whether the forces are repulsive or attractive. The only difference occurs in
the value of the numerical constants A" and A",
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K, being the constant of attraction or repulsion between two molecules m in the
same way as Ky, is the constant for two unlike molecules.

Thus %, &, k, are in this case, as in the preceding case of § 13, numerical constants.
The calculation of " and \” for various values of n from the definite integrals already
indicated would afford an interesting theoretical investigation, but as actual molecules
do not conform very closely to our hypothesis, the practical importance of the matter
would hardly justify the labour. MAXWELL calculated their values, however, by
quadrature, in the special case n = 5 (the forces being repulsive), and found that*

(49) N (5) = 26595,  \"(5) = 1'3682.

15. Reged Elastic Spheres which Attract One Another.

It is an undoubted fact that molecules attract one another at small distances (as is
manifest from the force of cohesion, to take but a single example). By considering
the effect of such forces in bringing about collisions between molecules (regarded as
rigid elastic spheres) which would otherwise pass by one another, SurHERLANDT had
great success in explaining the variation of viscosity with temperature. His
treatment of the problem, while very suggestive, and forming an important
contribution to the kinetic theory, laid no claim to rigour.

In applying the present methods to the study of the same problem, we shall use the
notation o, o, ¢y5, ¢'1, of §§ 18 and 14; ¢y, () will now represent the mutual potential
due to the forces of cohesion. As before, we consider the path of the centre of the
second molecule relative to that of the first. When the apsidal distance exceeds
o+d’, no collision takes place, and the deflection 2x is given by the same equation as
in § 14, viz., by

(50) X= j;'o [1 -7+ »%5 {‘l”lm <—'719> "95’12 ( ® )}]*1/2 dﬂ-

When, however, the apsidal distance is less than o+¢" a collision will take place,
and the deflection 2x is twice the angle between the asymptote of the relative path
and the radius vector from the centre of the first molecule to that of the second when
the two are in contact (z.e., for » = o +d’).

The differential equation of the relative path is

a\ 2
L <gl%> = ]%.E{%Voz‘*“ﬁ,lz (r) = ¢ ( )} —1.

,},.2
The condition for a collision is evidently

12
P < ______)~ %V02+¢’12 (0'+a") —¢f12 ( 00)}

* ¢Scientific Papers,’ vol. ii.,, p. 42. A (5) and A" (5) are, of course, the same as MAXWELL’S
A, and A,
t ¢ Phil. Mag.,” 1893, (5), xxxvi., p. 507

VOL. CCXI.—A. 3 N
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” . - dgly, .
Since the forces are attractive, —-&—;‘3 1s negative, so that
’ ’ ’ _ ” d¢/l2
(51) ¢ (o+0’) = () = — “‘d;,"d”'

is positive ; we shall denote it by 40? for convenience. If we write py for

Zi‘i 2 2)1/2
v, (b4 V)]

the condition for a collision becomes
P < Py,
Next, by elementary geometry, the angle x, between the radii vectores r» = o+o’
and » = o, 1s given by
tan y = » a0
dr’
so that for p < py, we have

sin’ y = {% <ﬂ>2 N 1}“1 p*V 2 P
’

do - (0'+o")2 (b2+V02) = Py’
2 2

sin? 2y = 4 19V—2<1—pp 2>.
o Vo

Consequently we have
(V) = 47rV0j sin’ y . pdp = 47V, Jpv"]-f%p olp+47rV0J sin? x . p dp,

0 o Py, Py, '
where in the latter integral x is given by equation (50). We denote the latter
integral by f'1;(V,), the form of the function depending on the law of attraction
between the molecules.

Thus

’\2 2 2
(V) = 7V, POV oy, (V).
0
Similarly we have

/\2 P
@, (V) = 1oV, VIV oy (v,

where

S (V)= | sin 2y pdp.

Py,
Substituting these values in the integrals P, R, S, we find that

!
hmm/ v,

*® _ hanan!. 2 * — 32 @ __]_lﬂb" 2
Py = 7"(°'+°'I)2{.\‘o Ve et AV,+0? _L Ve mral dvo}+j0 S (V) Vo e mem ’ dv,,

m+m/\? hmm/
= (ot (T g ),

where P’3 denotes the last integral on the preceding line.
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With a similar notation for R’ 12, &e., we find that

’
R/, = 37r(0'+o') (%> { +102 :;ﬁ";’bfb,} +R,,

S = 127 (o +4d)? <m+m> {1 12 W}Z'im l-{—S’m.

hmm/ m’)

The terms P’y &c., represent the effect of the attractive forces in deflecting the
molecules without inducing collisions; they are functions of the temperature in

. . hmm! . . .

eneral, and can be expanded in ascending powers of 2.e., In descendin
) P 7
m—+m

powers of 6. It may be shown that in each case they are of the form

Ns 1\2 7\3
(o-+o")2 <m———~+,m; {A < hamm, ,> +B (——-‘-——hmm ,) -+ } s
hmm/ m-+m T+ m
where s = 3, 4, or 5, according as we are considering P, R, or S.
Hence the preceding formulee may be written

P’12= 7r(cr+cr (m+m>< -Ql-2-+é"+...>,

R = 87 (o+d) <

1 0 mm/
0= Rm+m’

SUTHERLAND, in his formula for the coefficient of viscosity, neglected all the terms
of lower order in 6 than C,[6, and the success of the formula in representing the
variations of viscosity with temperature (in the case of gases, though not in the case
of vapours) seems to show that this procedure is legitimate under ordinary conditions
in gases. This is equivalent to the neglect of the effect of the attractive forces in
deflecting molecules without producing collisions.

If we agree to neglect these terms our formule become

and so on, where we have put C,

ey 3210
Pl? T(O’+O') <hmm/ 1+ 0 3

’ 2_2_3 39_1_1> ” 2/l> <1 __0_1_1>

(52) J P = dro <hm> L+853),  Rha=dndian) (117);

143G 144 e 1+%g¥—

k._..3 ? 0 ] 8 6 k 48 6

TP G ML Gy PTEGY

k Y 3 s

* R denotes the universal gas-constant of the formula pv = (R/m) 0

3 N 2
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where we have written
b*m
O11 = 'II? ‘T{“ .

In this case, therefore, the constants £ are no longer independent of the
temperature. It must not be forgotten that these last equations do not apply to
vapours.

Parr III.—DiscussioN oF THE THEORETICAL RESULTS, AND COMPARISON WITH
ExXPERIMENTAL DATA.*

16. The principal formule arrived at in the first part of this work are (33)-(41);
they are quite general and involve no hypothesis as to the mode of interaction
between molecules (it being always understood that these are spherically symmetrical).
Although these formule indicate certain general laws, which require no knowledge
of the nature of the encounters, for the most part the equations can be reduced to a
useful form only when the quantities symbolically denoted by P'y,, Py, Ry, £, ki, and
k, are properly evaluated. This can be done only in certain special cases; and in
Part II. these calculations have been performed for three kinds of molecules, viz.,
rigid elastic spheres, point centres of force repelling or attracting one another
according to the inverse n'™ power law, and rigid elastic spheres surrounded by fields
of attractive force. The results of these calculations are given in equations (44)—(46),
(48), and (52) respectively.

When the formule are thus completed, by comparison with experimental data we
may find which of these three representations of the molecules best explains the facts,
though, as all of them are somewhat artificial and ideal, it is not necessary that any
one should excel the others in all respects. We shall find, however, that the third
hypothesis (that the molecules are rigid elastic attracting spheres) is, on the whole,
much the best of the three. It is, indeed, remarkable that so simple a mechanism can
explain so much. v

As it might be considered that the choice of formula allowed by the general
nature of our theory may possibly conceal errors due to some weakness in the
foundations of the analysis, I shall first consider the cases wherein this latitude of
choice is least, beginning with the case where there is none at all. I refer to
equation (34), viz.,

S = 3.0,

which is a perfectly definite relation between three measurable quantities. I shall

* Part III. has been entirely rewritten in October-November, 1911; much new matter, not in the
original Part III, has been added, this consisting chiefly (at Prof. LARMOR’S suggestion) of further
comparisons of the theory with experiment. Wherever possible I have used recent data, and I have in
parbicular made great use of the resalts obtained by the pupils of Prof. DorN, of Halle, from a well-
directed series of experiments on viscosity, diffusion, and conduction. I am indebted to Prof. DorN for
the loan of many reprints and dissertations relating to these experiments.
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next discuss the formule for the conductivity and viscosity of mixed gases, as these
only entail reference to the special law of interaction in the case of the numerical
constants £, k;, and &, (whose values are, moreover, approximately known, as they do
not differ very much with the special nature of the molecules). Lastly, I shall
consider diffusion and the viscosity of a simple gas, as the corresponding formulee
involve the most intimate molecular data, which can be measured only in very
indirect ways.

Any defect in analytical approximation involved in the theory is probably
quite negligible under ordinary conditions of pressure and temperature; the assump-
tion made in § 4 concerning the law of distribution of velocities is the only place
where error might arise, and both on theoretical and experimental grounds this
appears to be inappreciable.* Therefore, where no definite molecular hypothesis is
involved, the agreement with experimental data should be perfect within the limits
of experimental error. These conditions apply to equation (34) just quoted, and to a
less extent to the formule for conductivity and viscosity in mixed gases, where only
slight weight attaches to the special law of force which must in their cases be
assumed.

Very different considerations apply to the formule for diffusion and viscosity.
These have great weight in indicating the best representation of the molecules by the
manner in which they vary with the temperature, but if we use them to determine
the molecular diameter which is involved in the expressions for D,, and «, we are
treading on hazardous ground. Any discrepancy between the molecular diameter
obtained from x and that obtained from D, must be ascribed rather to the artificial
nature of the molecules postulated by the theory than to any defect in the theory
itself. From what modern electrical theories teach us, it appears extremely unlikely
that any definite molecular diameter exists at all, even in the case of monatomic gases.
Hence, while the formule D, and u afford valuable independent means of determining
the approximate dimensions of molecules, their interpretation must not be strained
too far; the agreement between the two sets of values may not necessarily lie within
the limits of experimental error. :

While the present theory is strictly concerned only with monatomic gases, it is
largely applicable to polyatomic gases; for, as the molecules are in rapid motion, they
must exert their actions equally in all directions during any short space of time, and
will therefore behave very much as though they were spherically symmetrical. All
general laws which hold good for monatomic gases may be expected to hold also for
polyatomic gases; and the results of experiment bear out this conclusion. Numerical
agreement is not to be looked for, however, as the variable action of the polyatomic
molecule will affect the numerical constants of the theory in taking the mean, just as
would be the case if we had supposed all the molecules to be moving with the same
speed, instead of different speeds varying widely about a mean value. In addition,

‘ * See the note on p. 483.
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as the present theory does not deal in any way with internal molecular energy, it will
not apply to the conduction of heat in polyatomic gases.

17. The Coefficient of Thermal Conduction.

Our expression for this quantity in terms ot the coefficient of viscosity and the
specific heat at constant volume is

S = 5uC,,

pofor

which assumes that the molecules are spherically symmetrical, but is otherwise
perfectly general. All previous writers on the kinetic theory have agreed on the
conclusion that

3 = fuC,,

where f is a numerical factor; but here agreement ends. Maxwrrr,* dealing with
molecules which are point centres of force repelling one another according to the
inverse fifth-power law, found as a result of his theory that f = §; this is, of course,
a very special case of the present theorem. Other writers, such as Crausius,
STEFAN, and O. E. MevER, have found values for f varying from 0'5 upwards, many
of these calculations, however, being confessedly rough attempts, while MAXWELL’S
theory attained a very high degree of accuracy.

MaxweLL's hypothesis is known not to be borne out by experimental facts (such
as the variation of viscosity with temperature), and the theory of conduction which
has hitherto found most acceptance is MEVER'S, which assumes that the molecules are
rigid elastic spheres. MEYER'S work was a valuable attempt at an exact treatment
of the problem, but the method adopted (that used by Crausrus and MAXWELL in
their early researches, but afterwards abandoned by MAXWELL as being misleading)
did not really allow of great accuracy. The expression for f which was arrived at
involved a definite integral, which was calculated (using mechanical quadratures) by
ConrAU and NEUGEBAUER.T JuANS} improved the proof of MEYER'S theorem, but
his corrections did not affect the final result. The law obtained was

S = 1'6027uC, ;

it has generally been considered that the difference between this value of 7,
and MAXWELL'S value §, arose from the different nature of the molecules con-
sidered. This view is in sharp contradiction to the theorem we have proved.
Hence, since actual molecules do not conform to MAXWELL'S hypothesis, whatever

* «Scientific Papers,” vol. ii,, p. 74. By a numerical slip he gave the value of  as . The error was
pointed out by BOLTZMANN and POINCARE.

+ Mever’s ¢ Kinetic Theory of Gases’ (English edition, 1899), Chapter IX.

1 JEANS’ ¢ Dynamical Theory of Gases,” Chapter XIII.
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experimental evidence we can adduce in favour of the value f = 4§ will confirm that
theorem.

As both theories treat of monatomic gases, we must seek for evidence with regard
to them. When this paper was written the only monatomic gas, of which I was
aware, for which ¥ is known was mercury vapour, referred to by MEYER.* While
a number of polyatomic gases obeyed his law fairly closely, this monatomic gas
alone formed a striking exception. KocuT has determined u for mercury vapour at
273° C. and 380° C., and also at the much lower temperature 203° C.; SCHLEIER-
MACHER] has determined ¥ at 203° C.; these data, together with the theoretically
calculated value of C,, lead to 3'15 as the value of f. MEYER raises some weighty
objections against the accuracy of the data, viz., (i) that KocH’s three values of u
show an unlikely amount of variation with the temperature; (ii) that the conden-
sation of saturated mercury in the capillary tube probably affected the determination
of w; and (iil) that it is uncertain whether the vapour is completely monatomic at
203° C.  While the resulting value of f is certainly unreliable, it 1s hard to conceive
of the experimental errors being so great as to explain the difference between
16027 and 3°15. So far as it goes, it tends rather to the support of the present
theory. ‘

Quite recently, however, I have found that Scuwarze had disproved MEYER'S
theory nine years ago, by showing that f= 25 for the true monatomic gases
argon and helilum.§ As these determinations are important in this connection, a
few details of them will be given. SCHLEIERMACHER'S method, now generally
accepted as the best, was used to determine 3, heat being conducted by the gas from
a heated platinum wire. The gases were very carefully prepared and purified,| and
in the reduction of the observations (which were made at two temperatures) due
corrections were applied for the heat lost by conduction along the wire and for the
temperature drop at the walls. The following values of J, were obtained :—

Argon 000003894, Helium 00003386, Air 0000005690,
the last named being determined as a check on the apparatus, and agreeing well with

* ¢ Kinetic Theory,” p. 295.

t ¢ WIED. Ann.,’ 1889, xxxvi., p. 346.

i Ibid., 1883, xix., p. 857.

§ W. SCHWARZE, ¢ Inaugural Dissertation,” Halle, 1902; ¢ Ann. d. Physik,” 11, p. 303, 1903; ¢Phys.
Zeitschrift,” 4, p. 229, 1903.

MEenLIsS (‘ Halle Diss.,” 1902) made an earlier determination of & for argon by the STEFAN-WINKELMANN
method, and found f = 2-44; this result was in such striking disagreement with MEYER’S theory that
SOHWARZE investigated the matter very thoroughly, both for argon and for helium, by the more accurate
method due to SCHLEIERMACHER. The result was quite unexpected, and neither observer seemed inclined
to regard it as a confirmation of MaXWELL’S hypothesis, but rather as being due to a numerical defect in
MEYER’S theory—which view is nearer the truth, according to the present theory.

[ The helium contained § per cent. impurity (probably of necn); the same material was used by
ScHULTZE (‘ Ann. d. Phys.,” 6, p. 303, 1901) to determine the value of p used above.
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464 MR. S. CHAPMAN ON THE KINETIC THEORY OF A GAS

WINKELMANN'S* value 0°0000568 and MULLER'ST value 0°000056. MEHLISS] obtained
0°000038 for argon.

ScruLTzE determined the following values of u, for argon and helium, using the
same materials as SCHWARZE :—

Argon 010002104, Helium 0°0001891.
Using the following values of C, :—
Argon¥ 0°0740, Helium|| 0°7142,
ScHWARZE thus finds these values of f:—

Argon 2'501, Helium 2'507.

I proceed to discuss briefly the case of polyatomic gases. It is immediately obvious
that the present theory does not apply here, for C, in actual fact differs widely from
its value for the monatomic gas contemplated in the foregoing calculations (this is
not to say that fis not equal to § for any polyatomic gas, but merely that our theory
leaves the question perfectly open). The same remark applies to any theory which
supposes the molecules to be devoid of internal energy—in particular to MEYER'S
theory. But the latter has derived all its support from polyatomic gases. MEYER’S
views on this point underwent some changes. In 1877%* he seems reluctantly to have
accepted the theory (strongly upheld by SteFaN and Borrzmanw) that the internal
and translational molecular energies travelled at different rates (the latter most
rapidly), so that the conductivity would be less for a gas whose molecules possess
much atomic energy than for a similar gas with little atomic energy.

In 1899, however, he held that the conduectivity is the same for both kinds of
energy, and supported this view by an unsound argument based on the law ot
equipartition. This enabled him to assert that f is equal to 1°6027 for all gases, and
so obtain all possible support from the data for polyatomic gases. More modern data
would give much less support to the theory, as we shall see. But such disproof is
unnecessary, for SCHWARZE'S experiments conclusively show (i) that MEYER'S value

* «Wigp. Ann.,’ 48, p. 180, 1893.

Ibid., 60, p. 82, 1897.

¢ Halle Diss.,” 1902.

¢ Halle Diss.,” 1901; ¢ Ann. d. Phys.,” 5, p. 140, 1901, and 6, p. 302, 1901.

|| Calculated from the formula 3R/Jm; m = 0-1439 for the helium used, and J was taken as 427.
This leads to the above value of f, given in ¢ Ann. d. Phys.,” 11, p. 303, 1903. In ¢ Phys. Zeitschrift,’ 8,
p- 229, 1903, J was taken as 424, which made f = 2-490.

9 C, for argon is calculated from C, (determined as 0°1233 by DITTENBERGER, ¢ Halle Diss.,” 1897)
and vy (determined as 1667 by NIEMEYER, ¢f. ‘Smithsonian Physical Tables,” 1910, p. 232). Thus
Cp/y = 0-0002104.

**% «Kinetic Theory of Gases,” 1st edition, 1877.

tt Ibid , 2nd edition, English translation, 1899, pp. 291-296.

R e =t
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CONSTITUTED OF SPHERICALLY SYMMETRICAL MOLECULES. 465

of f is theoretically unsound, and (ii) that the internal energy does not travel at the
same rate as the translational energy. Hence the agreement of MEVER’S theory with
experiment must be accidental.

Borrzmany, who opposed MEYER’S view, developed a theory of conduction® on the
basis of MAXWELL'S hypothesis, taking into account the internal energy. He obtained
the following relation between f and v, the ratio of the specific heats,

S=2(y=1).

This reduces to MAXWELL'S law when y = 4, but the formula, as we shall see, is
not borne out by the experimental data.

I have not attempted to work out a theory of conduction in polyatomic gases, and
shall be content with pointing out how (in a general way, and with some marked
exceptions, which may, however, be due to faulty data) f tends to be larger or
smaller (while always less than §) according as a gas has less or more internal energy.
The table below gives the values of ¥, for all the gases for which determinations
are available, together with y, C,, x, and the values of f calculated from them, and
also f as calculated from Borrzmany’s formula. The gases are arranged in increasing
order of v, 2.e., in diminishing order of 8, the ratio of internal energy to total energy.

Gas. v Col pox 10T S x 107 1o hved). | (Borrzaran).
Ethane . 1-2191 0-302¢ 843 4957 1:94 0-82
Ethylene 1248 0-274 944 3958 1-53 0-93
Carbon dioxide 1-300 0-1477 1388 3078 150 1-12
Nitrous oxide . 1-304 0-1483 1381 3508 1-71 1-14
Methane. 1-3162 0-4515 104 7467 1:59 1-19
Ammonia 1-3178 0-3976 960 4588 1:20 119
Nitric oxide 1:394 0-1665 1680 4519 1-61 1:48
Oxygen . 1:402 01563 1900 57811 1:95 151
Air . 1:405 0-1695 1721 56910 1:95 1:52
Nitrogen 1-405 0-1738 1670 56911 1-96 1-52
Hydrogen . 1-402 2-427 854 38711 1-87 1-51
Carbon monoxide 1409 0-1730 1628 4998 1-77 1-53

* <Poga. Ann.,’ 157, 1876, pp. 457-469. The theory is partly empirical, being an adaptation of
MaxwrLL’s formula in which f = 5. BOLTZMANN states (p. 468) that the numerical coefficients would
have to be altered if any other molecular hypothesis were adopted. Our theorem shows that this is not
true, at any rate when y = %.

t These values of y are taken from JEANS’ “ Dynamical Theory of Gases” (pp. 220, 221), except where
the contrary is indicated.

1 LaxporT and BORNSTEIN’S tables ; observed by MULLER.
2 ¢Smithsonian Physical Tables,’ 1910; observed by MULLER.
8 Jbid. ; by WULLNER.

. 1 These values of C, are taken from JEANS' treatise (p. 218), except where the contrary is indicated.
They are due to WIEDEMANN and WULLNER.

VOL. CCXI.—A, 30
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466 MR. S. CHAPMAN ON THE KINETIC THEORY OF A GAS

4 Calculated from 7.

5, ¢ Calculated from C, and v, as given in the Smithsonian tables.

T ZiweLER, ‘Halle Diss.,” 1904. STEFAN (¢ Wiener Sitz.,’ 72, IL., p. 69, 1875) had found % x 107 =780
for methane, and WINKELMANN (‘PoGa. Aun.,” 156, p. 497, 1875) obtained the value 647. There are no
previous determinations for ethane.

8 Determined by WINKELMANN, as given in the Smithsonian tables.

9 WINKELMANN (MEYER, p. 295). '

10 SCHWARZE, loc. cif. ; WINKELMANN’S and MULLER’S determinations have already been mentioned.
There are also experiments by Topp (‘Roy. Soc. Proc.,” A, 1909, 83, p. 19) and ECKERLEIN (‘ Ann. d.
Phys.,” 3, p. 120, 1900), the latter being at low temperatures (for air, hydrogen, and carbon dioxide).

11 GUNTHER, ‘ Halle Diss.,” 1906. Also see MEYER’S treatise for earlier determinations.

The authorities for the above values of u, will be given later, when we come to
discuss the coefficient of viscosity. The table shows that the results agree neither
with MEYVER's nor BorrzMann’s theory. The values of f for methane and ammonia
stand out from the others, which show a tendency to increase with vy ; as all the
values of f are less than § it would appear that the view of StEFAN and Borrzmany
is correct, that the atomic energy travels slower than the translational energy.

In conclusion it may be remarked that the formula & = fuC, shows that ¥ will
behave (as the temperature or pressure varies) in a way which can be predicted from
the behaviour of u and C, separately, if the equation is correct. FExperiments have
confirmed this, and we shall therefore leave the discussion of these laws till we come
to the simpler case of p itself.

18. The Coefficient of Conduction jfor a Mixed Gas.

The expression we have obtained for this quantity enables us to determine it in
terms of the coefficients of viscosity of the two pure gases forming the mixture, and of
their coeflicient of diffusion, provided that we know the law of interaction between
the molecules. The latter is involved in the constants %, k,, and £, but these do not
vary very much with the law of force. In Part II. of this paper we have determined
their values in some special cases as follows :—

Rigid elastic spheres (46)—

Maxwery’s repelling molecules (48 and 49)—

F=o077l,  d=1, hy=1,

Attracting rigid spheres (52)—

hep 4800 g 14800 g e 14300
P 1+0,f0° PP 408 P 14+0,/0

where (as we shall see in § 21) the constant C,, must be determined by experiments
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on the variation of the coefficient of diffusion (of the gases concerned) with
temperature. "

The formula for the coefficient of conduction in a mixed gas (equations 40 and 41)
seems very complicated, but the calculations from it'in any particular case are quite
simple. Fortunately we have experimental data for testing the law. WacasMUuTH,*
at Halle, has recently determined the conductivity of mixtures of argon and helium
in various proportions; the gases being monatomic, our formule are properly
applicable. 'WacasmuTH himself undertook the research, at Prof. Dor~N’s suggestion,
in order to determine f in the formula ¥ = fuC,, taking the value of u from
TANzZLER'S experiments (which will be discussed in the next section) on the viscosity
of mixtures of argon and helium. He found that f so determined for the mixture
was greater than §, approaching a maximum (about 4) when there was 60 per cent.
of helium in the gas, and falling to §, as ScuwaARrzE showed, when either gas was
eliminated. This fact is interesting, but, in the absence of any explanatory theory,
does not lead to anything further.

WacnasmurH also found that the observations could be represented to within 2 per
cent. or 3 per cent. by the formula

8 Y
C1+Apfp  L+Bpfp

12

(modelled on a similar formula for the viscosity of gases which we shall consider
presently). As there were only four observations and two empirical constants the
fact is not very remarkable ; when p = 0 of course ¥y, = ¥, and when p’ = 0 we have
J1: = 3. A much better agreement was obtained by allowing the empirical constants
A and B (obtained by the method of least squares) to be imaginary. In this case the
expression reduces to the quotient of a cubic by a quartic homogeneous expression in
the variables p, p’; as WacHsSMUTH remarks, the relation is good as an interpolation
formula, but that is all.

We proceed to determine the value of ¥, from our formula. Taking oxygen as
the standard gas (for which p, = 0°001429 at 0° C. and normal pressure) we have w
(for argon) equal to 1224, and w’' = 0°125. The values of y, (i.e., u at 0° C.)
determined by Scuurrze (loc. cit. on p. 463), viz., 0°0002104 and 00001891 respec-
tively, will be used; also the previously given values of C,. The coefficient of
diffusion Dy, for argon and helium has been determined by ScmmipT and LoNtUs
(veferences given in § 21); reduced to 0° C. and normal pressure, in C.G.S. units it is
0650.f We now have all the necessary data for the calculation of ¥, in the case of
rigid spherical molecules and of Maxwellian molecules. For the case of attracting
spherical molecules we need also the coeflicient C,,; this has not been determined, tc

* <Halle Diss.,’ 1907 ; < Phys. Zeitschrift,” 7, p. 235, 1908. The method was that due to SCHLEIER-
MACHER, and the apparatus was that previously used by ScHWARZE and GUNTHER, alre ady quoted,
T As explained in § 21, this value is uncertain to within 2 per cent, or 3 per cent,

302
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468 MR. 8. CHAPMAN ON THE KINETIC THEORY OF A GAS

my knowledge, but the value 100 (intermediate between the values of C,; for argon
and helium) is near enough for our purpose, as the constant does not have much
weight in the formula.

From the equations (41) it is an easy matter to calculate the constants E, F, G,
E,, F,, Gy; we find the following values® for the three special kinds of molecules
considered :—

Rigid spheres—

F = 666, F = 2073, G = 1060,

B, =393x10, T, = 376x10, G, = 0704x10"
Maxwellian molecules—

E = 410, F = 17756, G = 1065,
E, =242x10, F, = 265x10 0706 x 10%

Attracting spheres—
E = 538, F =190, G = 1056,
E, =317x104  F,= 313x10%, G, = 0700x10"

We have written E, and G in place of Ew/x and Guw/[u’ respectively. Our formula
thus becomes

S’ 5 (O ) Ep2+ Fpp' + Gplz
12 — 2 v/12 9
B, p*+F, pp’ + G p™

where (C,);, 1s given by equation (39A). The following table gives the values of p
and p’ and the observed values of 3,1 from WAcHSMUTH'S paper, together with 9,
calculated according to the above three hypotheses :—

TrerMaL Conductivity of Mixtures of Argon and Helium.

Y9 x 107 (calculated).
P P (Co)iz ¥y x 107
L )19

(argon). (helinm). (observed). Rigid Attracting Maxwellian

spheres. spheres. ’ molecules.
1-000 0-0000 0-0740 389 389 389 389
0-730 0-270 0-0984 741 675 723 797
0-546 0-454 0-1257 1077 957 1054 1230
0-163 0-847 0-3094 2320 2208 2370 2550
0-0539 0-946 0-4952 2939 2750 2850 2900
0-0000 1-000 0-7142 3386 ! 3386 3386 3386

|

* These and nearly all the other calculations in Part 1I1. have been performed with a slide rule, which
is accurate enough for the purpoée.

T 912 was determined at two temperatures; we are, of course, using the value reduced to 0° C., as
given by WACHSMUTH,
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Considering the nature of the calculation, the agreement is extremely good in all
three cases (of course the values of ¥ for the pure gases are taken from the formula
84). The hypothesis that the molecules are rigid elastic spheres surrounded by fields
of attractive force gives notably the best results, however, the agreement being
within 8 per cent. in every case—which is little, if any, more than is introduced by
uncertainty of the data.

The above are the only available data for monatomic gases, so far as I know.
W ASSTLEWIA* has determined the conductivity of mixtures of hydrogen and oxygen,
and, of course, we have the conductivity of air; but as these are mixtures of
polyatomic gases our formula does not apply to them, so that they will not be
discussed here.

In conclusion, it is hardly necessary to remark that our formula for the conductivity
of a mixed gas reduces to that for a pure gas on putting p or p’ equal to zero. Since
(as we shall see) D,,, the coefficient of diffusion, varies inversely as the total pressure,
poDy, 1s independent of the pressure, as also are all the other quantities entering into
E, F, G, F,; hence the coeflicient of conduction of a mixture, like that of a pure gas,
is independent of the total pressure. This has been experimentally verified in the
case of air.f

19. The Coefficrent of Vascosity of Mixed Gases.

The viscosity of mixed gases has been much studied, both theoretically and
experimentally. It is especially interesting on account of the curious fact, first
noticed by GramAM (‘ Phil. Trans., 1846), that the addition of a moderate amount of
light gas (hydrogen, in the case mentioned) to a much more viscous and heavy gas
(carbon dioxide) may actually increase the viscosity of the latter. The same
phenomenon was commented on by MAXWELL in a Bakerian Lecture (1866), the
gases receiving particular mention being air and hydrogen.

The principal formulse which have been deduced for the viscosity of a mixture are
due to MaxwrLL,] Purus,§ SurHERLAND,|| and THiesEN.Y Of these only the first is
based on an adequate proof, but as it is a particular case of my own formula (got by
putting &k = A,fA, = 0'771) it does not need separate discussion. Purus’s formula is
based on an ingenious adaptation of the earlier theories of viscosity of a pure gas, and
although, like those theories, it is only approximate, and in some ways not

* ¢« Phys. Zeitschrift,’ 5, 1904, p. 737.

T MEYER, ‘ Kinetic Theory,” Chapter IX.; Topb, ‘ Roy. Soc. Proc.,” A, 83, p. 19, 1909.

1 ¢Secientific Papers,’ vol. ii., p. 72.

§ ¢CArL’S Repertorium,” xv., p. 590; ¢ Wien. Sitzungsber.,” 1879, Ixxix., Abth. 2, pp- 97, 745 ; see also
MEYER, ¢Kinetic Theory,” p. 200.

I “Phil. Mag.,” 1895, xl., p. 421.

9 ¢Verh. d. Deutsch. Phys. Ges.,” 4, p. 238, 1902.
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satisfactory,® it nevertheless forms a useful interpolation formula. The expression is

1, 1\1/2

(mp +m'p’)
(p 3/2 3/4+p/ /- 3/2 /3/4)2/3

SUTHERLAND, by an argument which though not rigorous is very interesting and
suggestive, arrives at the formula

(Puruy).

/

1 +Ap’/]o 1 +Bp/p
Whlch Traresen also obtained by a different method of proof. While, however,
TriEsEN left the formula as an empirical one, SUTHERLAND strove to find expressions
for A and B in terms of molecular constants. He found such expressions, but did so
half empirically by a study of GramAM’s data. In the case of the gases which he
considered, a very fair agreement was obtained.

My own formula (39) can be written
(53) bt

pw Ep?+ By pp/ + 47 Gp
where E, F, G, F, are given by equation (39) in terms of u, «/, Dy, (the coefficient of
diffusion), and a constant & which depends on the particular law of action between
the molecules ; £ 1s unknown, but may be expected to lie near or between the values
already found for it in special cases (0'60 for elastic spheres, 0771 for Maxwellian
molecules).

Of the above formulee, that by PuLus is the only one which is perfectly explicit.
THIESEN'S expression is completely empirical, and is useful only as an interpolation
formula. PuLus’s relation shares the virtues and defects of the theory on which it is
founded, and therefore prescribes a law of variation with temperature inconsistent
with the facts for most gases. THIESEN'S law, on the other hand, does not give any

(SurHERLAND, THIESEN),

information concerning variation with temperature, and the constants A and B must
be empirically determined for each case.

The formula (34) or (53), as we shall see later, completely expresses the relation
between u,, and the temperature, but, being quite general, it specifies a different law for
each molecular hypothesis; and while, conversely, the determination of k and the law
of temperature variation from experimental data may lead to further knowledge as to
the best molecular hypothesis, this very generality gives the formula a semi-empirical
character.

On theoretical grounds it is desirable that the success of equation (34) as an
interpolation formula should be tested. HExcellent experimental material exists for
the purpose. ScuMITTT has lately given a resumé of an extensive series of experi-

* Thus it tacitly implies that the viscosity varies as the square root of the absolute temperature (since
the theories on which it is based lead to this law).

t ¢Ann. d. Phys.,” 30, p. 393, 1909. Full references to the original sources of the data are there given.
SCHMITT was apparently unaware of SUTHERLAND’S formula, but, of course, it is the same as THIESEN’S,
if treated empirically.
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ments on viscosity carried on at Halle, and has compared the results with the
formulee of Purus and TarieseN. The former agrees remarkably well with the
observations, the residuals seldom exceeding 3 per cent. THIESEN'S formula agrees
even better still, the residuals rarely exceeding 1 per cent. This is not unnatural, as
the constants A and B were found by the method of least squares to three or four
significant figures. I have taken two of the longest tables given by ScmMITT, and
have roughly found the value of & (by trial and error) which makes the formula (34) or
(53) agree most closely with the observations. The results are given in the following

tableg® :—
Viscosity of Mixtures of Argon and Helium at 15° C.

; 12. 107
p p, M2 . 107 Pz
(argon). (helium). (observed). (talealated)
1-0000 0-0000 2220 2220
0-9507 0-0493 2231 2230
09093 0-0907 2243 2240
0-8571 0-1429 22563 2249
0-8074 0-1926 2266 2259
0-7705 0-2295 2264 2266
0-6846 0-3154 2266 2283
0-6119 0-3881 2303 2294
0-5337 0-4663 2299 . 2297
0-2915 07085 2280 2292
0-1921 0-8079 2226 2246
0-0000 1-0000 1966 1966
Viscostry of Mixtures of Oxygen and Hydrogen at 15° C.
; .107
P v 2. 107 ey
(oxygen). (hydrogen). (observed). ((}:‘ZC% a(’;ogd)
0-0000 1-0000 - 878 878
0-0521 09479 1092 1076
0-0878 0-9122 1191 1191
0-1561. 0-8439 1359 1370
0-3333 0:6667 - 1674 1672
0-5678 0-4322 1877 1876
0-8126 0-1874 1992 1975
0-9555 0-0445 2014 2007
1-0000 0-0000 2014 2014

* In the first table the experimental constants used were as follows: px 1077 = 2220, p' x 107 = 1966,
w= 1224, w = 0-125 (relative to oxygen), py (at 15° C.) = 0001353, Dy, (at 15° C. and in C.G.S.
units) = 0-705 (from SCHMIDT’S experiments, ¢f. p. 478). The values of E, ¥, G, F; were 7-897, 6897,
1-069, and 2°776 x 10* respectively.

In the second table the values of px 107 were 2014 and 878, w= 1, @' = 0:0629, py = 0:001353,
Dys (from JACKMANN’S experiments, ¢f. p. 478) = 0760, at 15° C. and in C.G.S. units. The values of
E, F, G, Fy were 11:34, 9:676, 1:049, and 5-205 x 104 respectively.
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The sum of the residuals between columns 3 and 4 is 77 in the first case, 54 in
the second®; more accurate determinations of % would probably reduce these
figures, but the agreement is already within the limits of experimental error. It will
be seen that the values of £ which have been found, viz., 0'69 for argon and helium
and 0°65 for oxygen and hydrogen, are intermediate between the values corresponding
to the elastic-sphere theory and MAXWELL'S hypothesis, a result which confirms our
theory. It is impossible to tell what special molecular structure these numbers
indicate until the integrals of Part II. of this paper are worked out for other cases;
it may be that a very slight modification of one of the hypotheses there considered
would explain the figures.

The above tables, and others which might be given, show that our formula agrees
well with observation, with a value of k accordant with the theory; its success
is therefore more significant than that of TareseEN's formula, with its two
empirical constants. It may be noticed that THIESEN'S expression can also be put
into the form (53), with the speciality, however, that a relation exists between the
three independent constants of (53) reducing them to two. Nevertheless, this
agreement in functional form is sufficient to explain the success of THIESEN'S
expression as an interpolation formula over the limited range (0, 1) of p and p’. Tt
may be concluded that, as far as the latter purpose goes, Purus’s formula, though
not theoretically well founded, is the best (when the values of u and ' at the
temperature considered are assigned), because it is very simple in form, quite definite,
and sufficiently accurate for most purposes; while THIESEN'S formula requires the
knowledge of two empirical constants, and my own formula is not so well suited for
numerical calculation. \

The study of the variation of the viscosity of mixed gases with the temperature is
best deferred till the analogous question has been discussed for simple gases; the
subject will therefore be briefly discussed in § 22.

20. The Coefficrent of Viscosity of a Simple Gas.

The formule which have already been discussed do not contain any reference to
the internal structure of the molecule, so far as this could be avoided, but are

* The corresponding figures for THIESEN'S formula are 55 and 51, and for Purus’s formula 126 and
187. Cf. K. ScEMITT, ¢ Ann. d. Phys.,” 30, p. 393, 1909 ; pp. 408, 406.

t The form of the expression (53) is well suited to explain the phenomenon mentioned at the beginning
of this section. It shows that pys is really a weighted mean between p, p’ and F/Fy, the weight depending
on the ratios E: ¥ : G and varying with p and p". For mixtures of CO; and H we have F/F, > p > p';
also as E: G, or 1+kw/w : 1+kw'/w is large, on account of the largeness of w/w), p'is given very little
weight in the mean except when p is very small. Therefore, for moderate values of the ratio p/p’, the
value of pg lies between F/Fy and p, and may exceed the latter considerably.

The same thing may be noted to a small extent in the above argon-helium table. From the figures
already given, we have F/F; = 2482 x 1077, which is greater than 2220 x 1077, the viscosity of argon ab
the temperature considered.
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CONSTITUTED OF SPHERICALLY SYMMETRICAL MOLECULES. 473

expressed as relations between directly measurable quantities. This enabled us to
verify that our conclusions were borne out by the results of experiment. The
equations might have been written otherwise, however, so that the formule should
express 3, J, pmyp in terms of unknown molecular data, which might then be found
from the experimental values of & and u,,; there would still be some check on the
theory by the comparison of the values of the molecular constants found from
different formulee. The reference to these constants was avoided by substitution of
w and Dy, into the formule, which were thus rendered much simpler; no such
simplification can be made in the expressions for x and D,,, and as these involve the
molecular data in the least complicated form, they are much the most suitable for
the purpose of determining the diameter of molecules.
Our expression (83) for the viscosity of a simple gas is

_ 5 <g1 \3/2 ,_l_“'-
# 4h3m2 }I/I'I’L/ WR”ll ’

R}, is a function of the temperature only, so also is % (since 2/ = 1/R0); and m, the mass
of a molecule, is a constant for any gas. Hence we have obtained a perfectly general
proof (for the case of a monatomic gas) that the coefficient of viscosity is independent
of the pressure and density of a gas, and depends only on the temperature. This
remarkable law was first discovered by MAXWELL.

If we substitute the values of R”;;, which we have already found in special cases
(see equations 45, 52, and 48), we get the following special laws :—

5m 1 1 5m R >1/2 )
54 = . L om (I last h ,
154 = 64/= /(2hm) " & 64¢2\/7r<m9 (elastic spheres)

5m /R \2 1 )
55 - R\ 1 tracting sphores).
(55) m= i \/T<m 9> G (attracting spheres)

0
n+3

(56) M= A02‘"+*1) (centres of force o 1/r"),

where in the last equation we have

A= 5¢/m m <n_-1>7:?f<@>%+m
g, 2 > 4Kym/  \m
A (n)F<4 p|

2 2

(the force between two molecules at distance » being K,ym?/r"), and A" (n) is a number
depending only on 7, having two values for each one of 7, according as the force is
attractive or repulsive.

The first equation shows that if the molecules are simple elastic spheres the
viscosity varies as the square root of the absolute temperature (this law is due to
MaxweLL) ; the second shows that when the spheres also attract one another the

VOL. CCXI.—A. 3 r
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474 MR. S. CHAPMAN ON THE KINETIC THEORY OF A GAS

viscosity varies as 672 (1+C/60)7", as was first discovered by SuTHERLAND* ; while the
last equation shows that, if the molecules attract or repel one another according to
the inverse n' power law, then u is proportional to the (n+3)/2 (n—1)" power of 6.
Tt is interesting to notice that Lord RavreieuT predicted this law of variation from
a consideration of dimensions alone; the present formula is complete, with an exact
analytical expression for the numerical constant. If we write u, for the viscosity at
0° C., the three laws just indicated may be written

" <9>”2 " <9>1’2 14Cl0, <e>’<‘>
Mo 0/ Mo 6/ 1+C/6 , o\,
When the molecules repel one another according to the inverse fifth power of the
distance, the last equation becomes

/U-/ Mo = 0/ 6os
which was obtained by MAXWELL.

Experiment shows that the second formula (generally known as SUTHERLAND’S
formula) agrees far better with the actual facts than the others. MAXWELLS two
hypothetical laws, uoc8* and p o6, are obeyed (even approximately) by very few gases.
The law uoc 6 (where s = (n+3)[2 (n—1)) represents the variation much better in most
cases, but even this applies only over a small range of temperature, after which a new
value of 7 is required. On the other hand, SUTHERLAND’S formula applies universally
so far as it has been tested.] It will be sufficient to mention the cases of helium and
hydrogen. ScEMITT§ gives tables showing that the law agrees with the observations
of these gases from —60° C. to 185° C.; below —60° C. the agreement ceases to be
good. Thus this evidence tends to confirm the hypothesis that the molecules behave
for our purpose like attracting spheres.

The value of C has been shown in Part II. (pp. 457-460) to be a multiple of the
mutual potential of two molecules in contact with one another. This was shown by
SUTHERLAND in his original paper, but as his mathematics was intentionally only
approximate, his numerical constant is not correct.]] The correction may be of
importance when the theory of the constant C is further developed.¥ It must be
remembered always that 1+C/f6 is only the beginning of an infinite series of powers

* ¢ Phil. Mag.,” 1893 (5), xxxvi., p. 507.

t «“On the Viscosity of Argon as affected by Temperature,” ¢ Scientific Papers,’ vol. iv., p. 452, and
p. 481.

1 We are referring to gases under normal conditions; when the critical point is approached, the law
ceases to be valid.

§ ¢‘Ann. d. Phys.” 30, 1909, p. 399, where references to the original sources will be found, as well as
data for other gases. )

|| This does not affect his discussion (loc. cit.) of the law of attraction between molecules, as he was there
concerned only with the relative values of C for different gases.

9 It is interesting to notice that RANKINE (¢ Phil. Mag.,” January, 1911, p. 45, and ¢ Roy. Soc. Proc.,” 84
p. 190) has found that for several gases C is proportional to the critical temperature.
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CONSTITUTED OF SPHERICALLY SYMMETRICAL MOLECULES. 475

of 1/6, and that later terms become important in the case of vapours, though for
ordinary gases these, the first two, terms appear to be enough.

As we have seen, the above laws of variation with temperature given by our theory
have been announced before. The difference between our formule and the earlier
ones chiefly consists (as regards viscosity) in the numerical constants. We have
already seen, in the case of the coeflicient of conduction, to what grave errors
(/= 160 instead of 2'50) the older elastic-sphere theory may lead. The expression
given by MEYER for the viscosity differs considerably from the present one; JEAns*
made an undoubted improvement in the older theory by allowing for the persistence
of velocities after molecular collisions. The fact that this important consideration had
been previously overlooked illustrates the imperfections of that theory. As it is, the
correction for persistence of velocities is itself of uncertain amountt ; however, by its
means the discordance between the formula of the older theory, and that given by
the present theory for the case of elastic spherical molecules, is reduced almost to
10 per cent.}

From equations (54) and (55) we proceed to determine what evidence the various
hypotheses lead to, as regards the size of molecules. Those formule are strictly true
only for monatomic gases, but can be applied to polyatomic gases with much more
safety than could the formule for the conductivity of gases, where the internal
energy (which here plays little or no part) was very important. The formula (56)
could also be used to determine the relative force constants of the molecules when
assumed to be point-centres of force, but as this is of less interest we shall not trouble
to do so. ‘

The said equations contain R/m, which can be determined from data as to the
density of a gas at a given temperature and pressure. A table of values of R/m for
several gases is given by JEANS (p. 1183, loc. ¢it.). To determine o, the radius of the
molecule, we also require to know m, or, since p = vm, we require to know », which is
AvVoGADRO'S constant. JEANS used the value 4x10%, the best one then available ;
but recent researches§ agree in indicating 277 x 10* as the correct values, which we
shall therefore use here. In the following table are given the values of g, C, and
ox 10° for some gases, the latter being calculated according to the two hypotheses
considered. It will be noticed that the radii of the molecules on the hypothesis that
they attract one another is less than that when no such forces exist ; of course, in the

¥ «Dynamical Theory of Gases,” p. 238, p. 250.
T Ibid., p. 250, line 13, where it is assumed for the sake of simplicity that the excess of momentum
above that appropriate to the point of collision goes in equal proportions to each molecule.
1 In our notation, JEANS’ formula (581) may be written
88 m (R \2
o)
which is 896 times our own expression.
§ SUTHERLAND (‘Phil. Mag.,’ 1909, February, p. 320) quotes RUTHERFORD as the authority for this
figure, and mentions that it is in good agreement with PLANCK’S value 2°80 x 10,

3P 2
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476 MR. S. CHAPMAN ON THE KINETIC THEORY OF A GAS

latter case the apparent size includes part of the extension of the field of force of the
molecule. In selecting the values of x, and C I have preferred to use the mean
of recent determinations (where these exist) rather than to go back to GRAHAM'S or
OBERMAYER’S experiments.

o x 108,
Gas. o X 107, C.
Elastic-sphere Attracting-sphere

theory. theory.
Air .0 0L 17211 1115 1830 1:542
Hydrogen . . . . 8542 756 1-332 1-180
Oxygen . . . . . 19003 130-3 1-781 1469
Nitrogen . . . . 16724 111-7 1-842 1563
Nitrous oxide . . . 13815 167 2967 1-787
Nitric oxide . . . 16805 195 1-869 1429
Carbon dioxide . . 13886 249 2259 1:636
Carbon monoxide . . 16287 156 1-868 1-490
Chlorine. . . . . 1280° 199 2654 2:019
Ebhylene e 9905 249 2-389 1-730
Hellum . . . . . 18858 753 1:065 0°943
Argon . . . . . 21079 162 1-790 1-508
Neon . . . . . . 298110 56 1-266 1:154
Krypton. . . . . 233410 142 1622 1-317
Xenon . . . . . 210710 252 2408 1-738

1 Authorities : The value of p is a mean of 1714 (‘LaNporT and BORNSTEIN’S Tables’), 1713 (Hoaq,
¢Proc. Amer. Acad.,” 40, 18, p. 611, 1905), 1733 (BrErTENBACH, ‘Ann. d. Phys.’ 5, 1901, p. 166),
1730 (Scmurtze, ‘Ann. d. Phys.,’ 5, 1901, p. 140), 1736 (TANZLER, ¢ Verh. Deutsch. Phys. Gesell.,’ 8,
p. 221, 1906), and 1702 (GRINDLEY and GIBSON, ‘Roy. Soc. Proc.,” A, 80, p. 114); the value of C is a
mean of 119-4 (BREITENBACH), 113 (SUTHERLAND, ‘Phil. Mag., February, 1909, p. 320), 111-3 (RAY-
LEIGH, ‘ Scientific Papers,” vol. iv., p. 452, p. 481), and 1025 (GRINDLEY and GIBSON).

2 o is the mean of 864 (‘LanpoL1’s Tables’), 857 4 (BREITENBACH, loc. cif.), 841 (MARKOWSKI, ¢ Ann.
d. Phys.,” 14, p. 742, 1904) ; O is the mean of 717 (BREITENBACH), 72°2 (RAYLEIGH, loc. cit.), 83 (MAR-
KOWSKI, loc. ¢it.), 79 and 72 (SUTHERLAND, ‘Phil. Mag.’ (5), 36, p. 507, 1893, and February, 1909, p. 320).

3 The mean of 1873 (LANDOLT) and 1926 (MARKOWSKI, loc. cit.); C from 1282 (RAYLEIGH, ‘Roy. Soc.
Proc.,” 62, 1897 ; 66, 1900; 67, 1900), 138 (MARKOWSKI), 127 and 128 (SUTHERLAND, loc. cit.).

¢ GraHAM and OBERMAYER (¢f. MEYER'S ‘Kinetic Theory’) 1660, 1670, and MARKOWSKI, 1675;
C from 115, 113 (MARKOWSKI), 109, 110 (SUTHERLAND, loc. cit.). '

5 o from JEANS’ treatise, p. 251 (due to OBERMAYER); C from SUTHERLAND, loc. eit.

6 BREITENBACH’S value of pg, and his and SUTHERLAND’S values of C (239, 258); both as previously
cited.

7 po from ‘Lanporr’s Tables’; C from SUTHERLAND, ‘Phil. Mag.,” February, 1909, calculated from
‘LanpoLrt’s Tables.’

§ po from 1891 (SCHULTZE, loc. eit.), 1887 (ScHigrLoH, ‘Halle Diss.,” 1908, cited by Scumitr, ¢ Ann. d.
Phys.,” 30, 1909, p. 393), 1879 (RANKINE, ‘Phil. Mag.,” Janusry, 1911, p. 45); and C from 80-3
(ScuurrzE), 722 (RAYLEIGH), 782 (SCHIERLOK), 70 (RANKINE), 76 (SUTHERLAND, loc. cit.).

% po from 2104 (SCHULTZE, loc. ¢it.), 2114 (SCHIERLOH, loc. ¢it.), 2102 (RANKINE, loc. cit.); C from 169+9
174-6, 142 (by the preceding three authorities), and 160 (SUTHERLAND, loc. cit.).

10 RANKINE (loc. cit.).
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CONSTITUTED OF SPHERICALLY SYMMETRICAL MOLECULES. 477

As we shall see, independent values of the radii of molecules may be obtained from
the coefficient of diffusion, which we proceed to consider.

21. The Coefficrent of Diffusion.

As the coefficient of diffusion of a gas into itself can be expressed much more
simply than that of one gas into another, we will discuss it first, though it cannot be
measured experimentally.

The expression obtained in Part I. was

1/2
==y L
Since » is proportional to the pressure, it follows that D, varies inversely as the
pressure, the other factors being functions of the temperature alone. If we substitute
for P';; from equations (45), (48), and (52), and eliminate the molecular constants by
means of the expressions found in the preceding section for the corresponding values
of u, we get the following results :—

D,=6% (rigid elastic spheres),
p &
A\ (n) ' 2 ) o -
D —eN_\T ‘(3”‘ M 20— 0
e ) 1), (centres of force Km® "),
~ 1+%g
D,=¢ £ ' (attracting spheres),
14+ 80 |
"o

where in the last case C is the constant in SUTHERLAND'S law of viscosity. All these
formule agree in showing that Dy, is a numerical multiple of w/p, the factor generally
being a function of the temperature, though with the first two hypotheses above, the
factor is a constant. When, in the case of the second hypothesis, we take n = 5 (as
MaxweLL did, the force being repulsive), the formula becomes

D, = 1543 ‘;f (MaxwerL's fifth-power law),

using' the values already given for A, and A,. The extension to general values of 7
is interesting, if only for the unobvious character of the factor <3— —2—1>
n.—-—

The best value of the numerical factor hitherto obtained, on the hypothesis that
the molecules are elastic spheres, is due to JEANS (see his treatise, p. 278). After
allowing for persistence of velocities, he deduces that 1'84 is its approximate value;
this is in very fair agreement with ¢, the result of the present theory.


http://rsta.royalsocietypublishing.org/

N
I \

a4
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

478 MR. S. CHAPMAN ON THE KINETIC THEORY OF A GAS

The expression obtained in Part I. for the coeflicient of diffusion between two

gases 18
Bl <m +m/ >7/2 1
16 hiv! ) (v -+ ) Py

Since

1 _ R _Ro
vy p+p’ p

where p, 1s the total pressure, and since » and v do not occur elsewhere in the
expression, it follows that, according to the present theory, the coeflicient of diffusion
is independent of the relative proportions of the gases in the mixture. On this point
STEFAN and MAXWELL were at issue with MEVER,* whose theory predicted a large
change in the coeflicient of diffusion as the proportions of the gases were varied.
Several experimentst have recently been made at Halle to test the rival theories.
The pairs of gases taken were O-H, O-N, H-N, A-He, CO,~H. The ratio of the
components was varied from 1:3 to 3: 1 (roughly), and the results showed systematic
differences in the values of D, which reached 8 per cent. in extreme cases. Though
part of this variation may be due to experimental errors, it is undoubtedly the case
that appreciable variations of D,, exist, or, at any rate, variations in the values of D,
as derived from the accepted theory of the experiments. This theory is of rather an
elaborate nature, and takes no account of the boundary conditions; any attempt at a
revision of the theory of diffusion should include an examination of the theory of the
experiments by which the diffusion is measured ; and it is by no means impossible
that faults in the accepted theory of the experiment may account for the small
variations of 5 per cent. or so in the determinations of Dy,. At the same time it must
be remembered that the value of D,; here arrived at theoretically is based on the
assumption that the square of the velocity of diffusion, together with small deviations
from MAXWELL's law of distribution, are negligible. If these had been taken account
of (and it is easy to do so) part or the whole of the outstanding discrepancy would
probably be explained. As the variations are so small, however, I have not troubled
to carry out these calculations.

The experiments emphatically disprove MEYER'S theory, which predicts changes of
20 per cent. or more in Dy,, and there can be no doubt that the general principles of
the theory as laid down by STEFAN and MAXWELL are much nearer the truth than
those advocated by MEvEr. A modification of MEYER'S theory by Gross,f which
reduced the amount of the variations predicted by MEYER, has also been shown to be
incorrect, since the actual variations of D,,, though similar in amount to the theoretical
values deduced by GRross, are in the opposite direction.

* See his < Kinetic Theory,” Chapter VIII.

t R. ScemipT, ¢ Halle Diss.,’ 1904, and ¢ Ann. d. Phys.,” 14, 1904, p. 801 ; R. DeurscH, ‘¢ Halle Diss.,’
1907 ; JAcKMANY, ¢ Halle Diss.,”’ 1906 ; and Lo~tus, ¢ Halle Diss.,” 1909, All these results are summarized
by LoxNivus, ¢ Ann. d. Phys.,” 29, 1909, p. 664.

1 G. Gross, ¢ WIED. Ann.,” 40, p. 424, 1890
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The special forms of the coefficient of diffusion, corresponding to the three molecular
hypotheses considered in Part IL., are as follows :—

D.—a A/2 1 <1 L1 >1/2 <pﬂ>w 1 p, (9>3/2 <rigid elastic>
12— 16 — - \a ’

T (o+0') w w po/ v P \G spheres
30 1 11\ 2p, 01560 0 tres
] 2 2(n—1 1 /
Dy, = =% 3 {(;ﬁ@;) =+ @"} B2~ (E?EOII::)
K’12kl (n) T (3 —n—~——_ 1> Po Yo p 0 0 )

A A

2 1 (1, 1\ /p\" 1 o\ 1 attractin
Dy, = £ M_w<, _> &) __ﬁ<_> g>
v 7 (o+o’) w W (po v p \&/ 1+Cy,[0 < spheres )’

where after substitution from equations (45), (48), and (52) we have put the formule
into a more convenient form as above; w and w’ are, as before, the specific gravities
relative to a standard gas whose density at pressure p, and temperature 6, is p,; v, is
AvoGADRO’S constant, at the same pressure and temperature. It may be noticed
that MaxweLL,* by applying the methods of his fifth-power-law theory to the case
of a gas whose molecules were elastic spheres, obtained an expression % times as great
as (but in other respects identical with) the first of the equations just given; as he
did not give any details, it is impossible to say how his error arose—probably by a
numerical slip. '

The following equations simply express the law of variation of D,, with temperature,

OF

as shown by the above three equations :—
Dy,/(Dy), = (6/6,)* (rigid elastic spheres),

n+3
D.,/(Dy,), = (6/8,)2-0"" (point-centres of force),

Dy/(Dy), = (6/6,)2 {1+Cuf6,}/{1+C,[0}  (attracting spheres).

A

So far as I am aware, the variation of the coefficient of diffusion with the
temperature has never been properly examined experimentally ; the values of D,, are
generally found only at one temperature, or two at most, and this is insufficient to
decide between the second and third of the laws just given. From the analogous
behaviour of viscosity, as affected by temperature, however, the third law is probably
most nearly true, and the values of C,, have been worked out by SUTHERLAND on this
hypothesis.t In view of the importance of the constant C,, it is desirable that
further experiments be made on the variation of the coefficient of diffusion with
temperature.

SOCIETY

* ¢<Nature,” vol. viii.; ‘Scientific Papers,” vol. ii., p. 343.

+ The present theory shows that Cis, the temperature constant for diffusion, is a different multiple of
the mutual potential of two molecules in contact from that in the case of Cy1, the temperature constant for
viscosity. This fact was not indicated in SUTHERLAND'S investigation ; see ‘ Phil. Mag.” (5), 38, p. 1, 1894.

OF
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480 MR. 8. CHAPMAN ON THE KINETIC THEORY OF A GAS

As in the case of the coeflicient of viscosity, we proceed to give the values of the
molecular radii (according to the two theories of elastic spherical molecules, with and
without attraction) calculated from the coefficient of diffusion. From the latter we
get o+0o’, the sum of the radii of molecules of each kind considered. By taking three
pairs of the same three gases, like O-H, N-H, H-N, we can derive the actual values
of & in each case, which may then be compared with the values obtained from the
coeflicient of viscosity. I have thought it preferable, however, to compare the values
of o+0o’ obtained from diffusion with the sums o+¢’ of the values obtained from
viscosity (on the corresponding molecular hypothesis). The values of the coefficient
of diffusion (which are in C.G.S. units, and for the temperature 0° C.) are taken from
the Smithsonian tables (1910 edition); they are uncertain (partly for reasons already
discussed, partly for other reasons) to within about 5 per cent. ; different authorities
give values differing by from 5 per cent. to 10 per cent.; I have taken the mean,
where two values are given in the table cited. The constants C,, are taken from a
table given by SUTHERLAND* ; as they depend only on two values of D,,, and as C
occurs in such a form as to be largely affected by experimental errors, these values
are not well determined, though they are probably the best available. In several
cases I have not been able to find the value of C.

(o +0") x 108
-Coefficient Teirlxlgzra- Elastic-sphere Attracting-sphere
Gases undergoing diffusion. diﬁ’ﬁi wop. | coeffcient, theory. theory.
' Cio.
From From From From
diffusion. | viscosity. | diffusion. | viscosity.
Air-hydrogen 0661 74-5 2+99 3-16 265 2:62
Air-oxygen . 0-1775 — 3-42 3-61 — —
Carbon dioxide-air. .o 0-138 250 3738 4-09 2-70 3-18
Carbon dioxide~carbon monoxide .| 0-136 — 379 4-13 —— _—
Carbon dioxide-nitrous oxide . 0-0983 380 4-19 4-53 2:71 342
Carbon dioxide-oxygen . 0-1802 187 323 4:04 2-49 3-10
Carbon monoxide-ethylene . 0-101 —— 4-61 4-26 — —
Carbon monoxide-hydrogen . 0642 70 3-03 3:20 2-70 2-57
Carbon monoxide-oxygen 0-183 113 3-38 363 2-84 2:96
Hydrogen—carbon dioxide 0-538 115 3-29 3-59 276 2-72
Hydrogen-ethylene 0486 — 3-48 372 — —
Hydrogen—nitrous oxide . 0-535 —_ 3-30 360 — —
Hydrogen—oxygen . 0-679 100 2-94 3-11 2-52 255
Nitrogen—oxygen 0-174 117 347 362 2-87 3-02
Argon-heliumt . 0-650 — 2-53 2-85 —_ —

Considering the possibility of occasional exceptionally large errors due to the

* ¢<Phil. Mag.,” 1895, 40, p. 421; 1894, 38, p. 1.
+ R. ScHMIDT, ¢ Ann. d. Phys.,’ 14, 1904, p. 801
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number of experimental data entering into each of the above determinations of
molecular radii, the agreement shown is very good. It is notably better on the
hypothesis that the molecules attract one another than on the ordinary elastic sphere
theory (the large discrepancy in the case of CO,~N,O is probably due to the value of
C,,, which is larger than the value of C,, for either gas, and this is somewhat improbable).
In the case of the latter theory the value of ¢+¢’ determined directly from diffusion
1s in almost every case less than that obtained from separate observations of viscosity ;
there is a slight tendency for the same thing to show itself with the values deduced
from the other theory. This is probably to be attributed to the artificial nature of
our hypotheses; the effective distance of reversal of motion between two different
molecules may not really be half the sum of the effective distances for two pairs of
like molecules, though the rigid sphere hypotheses assume this. The third hypothesis
we have considered does not do so; but a comparison of diffusion and viscosity on
this hypothesis would only give us the relation between the force constants between
the molecules of one kind and different molecules, while the interesting question is the
one we have just tested, viz., how nearly alike will a molecule behave towards another
of the same kind, and towards one of a different kind.

The following table® may be. of interest, showing how the values of & obtained
from VAN DER WaALs' law agree with those obtained from viscosity (on the
attracting sphere theory) :—

o x 108 ox 108
Gas. (VAN DER WAALS' | (attracting sphere

theory). theory).
Hydrogen . ~ 115 1-18
Nitrogen . 1-76 1-55
Air . . . L. 1-64 1-54
Carbon dioxide . 1-70 149
Helium. 1-16 0-94
Argon . 1-43 1-51
Krypton . 1-56 1-32
Xenon . 1-71 1-74

22. The Varation of the Viscosity of Mixed Gases with Temperature.

This question was deferred till after the similar questions regarding the viscosity
of simple gases, and diffusion, had been discussed. The formula we obtained for u,,

* The values of o for the first four gases are caleulated from values of & (in VAN DER WAALS’ equation)
given by JEANS (‘ Dynamical Theory of Guases,” p. 141) from the experiments of VAN DER WAALS and
Rose INNES; but the value of v has been taken as 277 x 10 instead of 4-0 x 10%, as used by JEANs.
The values of b for the last four gases are taken from a paper by RUDORF, ‘Phil. Mag.,’ June, 1909,
p- 795.

VOL. COXI.—A. 3 Q


http://rsta.royalsocietypublishing.org/

A
/A A
a

A

THE ROYAL |
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

L\

[

/J
A

\

a

a ¥

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

482 MR. S. CHAPMAN ON THE KINETIC THEORY OF A GAS

was

<1 +k @ﬁ,>p2+ {2 (1—k) +G<i + L,)} pp’+ <1 +k ;L-z—/>p’2

w M
1 W e (w+w/)2 1 } ’ L( _@Z/> 12 ’
M<1 +kw,>p + {-~———ww, kG + G| 22 + v 1+k )P
where .
2 1
G = .
w+u PoDlz

We have already seen that, on the elastic sphere hypothesis, and the point centre
of force (K ymm/r") hypothesis, :

D12 oc 98+1) e 6, M/ o 6,

where s = % in the former case, and varies with 7 in the latter case. Hence
poDip o= 0,

so that G, 1fu, and 1[4 all vary with the temperature in the same way (we are
supposing that the value of n is the same for both kinds of molecules). Moreover, we
have seen in Part II. that £ is independent of the temperature in these hypotheses.
Hence the numerator of the above fraction is independent of 6, while the denominator
varies as 07, In other words, the coefficient of viscosity of the mixed gas behaves in
exactly the same way as that of the component gases, as the temperature varies.
The case is rather different on the attracting sphere hypothesis; remembering the
“expressions already found for £ and u and D,, it may easily be seen that

B+Co
= A3
te = AT o+ e

where for any given mixture A, B, C, D, E, I are independent of the temperature.
Over a limited range of 6 it is possible to find a constant K such that

B+Co A
D+Eo+F6? K+6

is extremely small, so that we may write

A0
“2 T TR/

showing that according to the attracting-sphere theory SurHErRLAND’S formula holds
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for mixtures as well as for simple gases—indeed, the formula has been more often
tested for air than for any simple gas. ScEMITT* and others have shown that
experimental results fully bear out this conclusion.

* ¢Ann. d. Phys.,” 30, p. 393, 1909; TANZLER (‘ Verh. Deutsch. Phys. Ges.,” 8, 12, p. 122, 1906).

T THiesEN (‘Verh. Deutsch. Phys. Ges.,” 8, 12, p. 236, 1906) states that SUTHERLAND’S formula and
his own law (see § 18 of this paper) are incompatible, although TANZLER’S experiments demonstrate the
contrary.

Note added February 15, 1912,

Later investigation shows that the neglect of the terms of higher degree than the third, in the
expression for the function F (p. 441), is not easily justifiable by rigorous analysis. The omitted terms
have been considered by ENskoa (¢ Phys. Zeitschrift,” xii., 58, 1911); his work suffices to show that the
formulee in this paper are correct except as regards a factor which in general is a function of the
temperature (only), and in particular cases is a numerical constant. The latter cases include the case of
elastic spherical molecules (as pointed out by ENskoG), and also of point centres of force varying inversely
as the n'™ power of the distance. Thus Lord RAYLEIGH'S theorem (p. 474) can be rigorously established.

I have endeavoured to form a numerical estimate of the correction factors to be applied to the formulze,
but the analytical difficulties involved have thus far proved unsurmountable. The expressions obtained
do not converge rapidly, and the calculations are very laborious ; but the problem is now perfectly definite,
and improved analysis may remove the difficulties.

The present theory must therefore be regarded as approximate only. In conjunction with ENskoa’s
work, however, it provides rigorous proofs of the relations connecting viscosity and conductivity with the
pressure and molecular diameter and mass, and in special cases also with temperature; the relations
themselves are well known in the case of simple gases, but not in that of compound gases. The numerical
constants are not rigorously determined, and are subject to correction ; but the agreement with experiment
seems to show that the approximation is a good one.

Lastly, it should be remarked that the theory of diffusion is unaffected by the terms omitted, so that
the above statements do not apply to it.
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